/* Copyright 2015 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_WELLSTATEMULTISEGMENT_HEADER_INCLUDED #define OPM_WELLSTATEMULTISEGMENT_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { /// The state of a set of multi-sgemnet wells // Since we are avoiding to use the old Wells structure, // it might be a good idea not to relate this State to the WellState much. class WellStateMultiSegment : public WellStateFullyImplicitBlackoil { public: typedef WellStateFullyImplicitBlackoil Base; typedef struct { int well_number; int start_segment; int number_of_segments; int start_perforation; int number_of_perforations; std::vector start_perforation_segment; // the starting position of perforation inside the segment std::vector number_of_perforations_segment; // the numbers for perforations for the segments } SegmentedMapentryType; typedef std::map SegmentedWellMapType; /// Allocate and initialize if wells is non-null. Also tries /// to give useful initial values to the bhp(), wellRates() /// and perfPhaseRates() fields, depending on controls template void init(const std::vector& wells, const ReservoirState& state, const PrevWellState& prevState) { const int nw = wells.size(); nseg_ = 0; nperf_ = 0; if (nw == 0) { perfPhaseRates().clear(); perfPress().clear(); segphaserates_.clear(); segpress_.clear(); return; } const int np = wells[0]->numberOfPhases(); // number of the phases for (int iw = 0; iw < nw; ++iw) { nperf_ += wells[iw]->numberOfPerforations(); nseg_ += wells[iw]->numberOfSegments(); } bhp().resize(nw); thp().resize(nw); top_segment_loc_.resize(nw); temperature().resize(nw, 273.15 + 20); // standard temperature for now wellRates().resize(nw * np, 0.0); currentControls().resize(nw); for(int iw = 0; iw < nw; ++iw) { currentControls()[iw] = well_controls_get_current(wells[iw]->wellControls()); } for (int iw = 0; iw < nw; ++iw) { assert((wells[iw]->wellType() == INJECTOR) || (wells[iw]->wellType() == PRODUCER)); } int start_segment = 0; int start_perforation = 0; perfPhaseRates().resize(nperf_ * np, 0.0); perfPress().resize(nperf_, -1.0e100); segphaserates_.resize(nseg_ * np, 0.0); segpress_.resize(nseg_, -1.0e100); for (int w = 0; w < nw; ++w) { assert((wells[w]->wellType() == INJECTOR) || (wells[w]->wellType() == PRODUCER)); const WellControls* ctrl = wells[w]->wellControls(); std::string well_name(wells[w]->name()); // Initialize the wellMap_ here SegmentedMapentryType& wellMapEntry = segmentedWellMap_[well_name]; wellMapEntry.well_number = w; wellMapEntry.start_segment = start_segment; wellMapEntry.number_of_segments = wells[w]->numberOfSegments(); wellMapEntry.start_perforation = start_perforation; wellMapEntry.number_of_perforations = wells[w]->numberOfPerforations(); top_segment_loc_[w] = start_segment; int start_perforation_segment = 0; wellMapEntry.start_perforation_segment.resize(wellMapEntry.number_of_segments); wellMapEntry.number_of_perforations_segment.resize(wellMapEntry.number_of_segments); for (int i = 0; i < wellMapEntry.number_of_segments; ++i) { wellMapEntry.start_perforation_segment[i] = start_perforation_segment; wellMapEntry.number_of_perforations_segment[i] = wells[w]->segmentPerforations()[i].size(); start_perforation_segment += wellMapEntry.number_of_perforations_segment[i]; } assert(start_perforation_segment == wellMapEntry.number_of_perforations); if (well_controls_well_is_stopped(ctrl)) { // 1. WellRates: 0 // 2. Bhp: assign bhp equal to bhp control, if applicable, otherwise // assign equal to first perforation cell pressure. if (well_controls_get_current_type(ctrl) == BHP) { bhp()[w] = well_controls_get_current_target(ctrl); } else { const int first_cell = wells[0]->wellCells()[0]; bhp()[w] = state.pressure()[first_cell]; } // 3. Thp: assign thp equal to thp control, if applicable, // otherwise assign equal to bhp value. if (well_controls_get_current_type(ctrl) == THP) { thp()[w] = well_controls_get_current_target( ctrl ); } else { thp()[w] = bhp()[w]; } // 4. Perforation pressures and phase rates // 5. Segment pressures and phase rates } else { // Open Wells // 1. Rates: initialize well rates to match controls if type is SURFACE_RATE. Otherwise, we // cannot set the correct value here, so we aasign a small rate with the correct sign so that any // logic depending on that sign will work as expected. if (well_controls_get_current_type(ctrl) == SURFACE_RATE) { const double rate_target = well_controls_get_current_target(ctrl); const double * distr = well_controls_get_current_distr( ctrl ); for (int p = 0; p < np; ++p) { wellRates()[np * w + p] = rate_target * distr[p]; } } else { const double small_rate = 1e-14; const double sign = (wells[w]->wellType() == INJECTOR) ? 1.0 : -1.0; for (int p = 0; p < np; ++p) { wellRates()[np * w + p] = small_rate * sign; } } // 2. Bhp: if (well_controls_get_current_type(ctrl) == BHP) { bhp()[w] = well_controls_get_current_target(ctrl); } else { const int first_cell = wells[w]->wellCells()[0]; const double safety_factor = (wells[w]->wellType() == INJECTOR) ? 1.01 : 0.99; bhp()[w] = safety_factor* state.pressure()[first_cell]; } // 3. Thp: if (well_controls_get_current_type(ctrl) == THP) { thp()[w] = well_controls_get_current_target(ctrl); } else { thp()[w] = bhp()[w]; } // 4. Perf rates and pressures int number_of_perforations = wellMapEntry.number_of_perforations; for (int i = 0; i < number_of_perforations; ++i) { for (int p = 0; p < np; ++p) { perfPhaseRates()[np * (i + start_perforation) + p] = wellRates()[np * w + p] / double(number_of_perforations); } if (wells[w]->isMultiSegmented()) { const double safety_factor = (wells[w]->wellType() == INJECTOR) ? 1.01 : 0.99; perfPress()[i + start_perforation] = safety_factor * state.pressure()[wells[w]->wellCells()[i]]; } else { perfPress()[i + start_perforation] = state.pressure()[wells[w]->wellCells()[i]]; } } // 5. Segment rates and pressures int number_of_segments = wellMapEntry.number_of_segments; // the seg_pressure is the same with the first perf_pressure. For the top segment, it is the same with bhp, // when under bhp control. // the seg_rates will related to the sum of the perforation rates, and also trying to keep consistent with the // well rates. Most importantly, the segment rates of the top segment is the same with the well rates. segpress_[start_segment] = bhp()[w]; for (int i = 1; i < number_of_segments; ++i) { int first_perforation_segment = start_perforation + wellMapEntry.start_perforation_segment[i]; segpress_[i + start_segment] = perfPress()[first_perforation_segment]; // the segmnent pressure of the top segment should be the bhp } for (int p = 0; p < np; ++p) { Eigen::VectorXd v_perf_rates(number_of_perforations); for (int i = 0; i < number_of_perforations; ++i) { v_perf_rates[i] = perfPhaseRates()[np * (i + start_perforation) + p]; } Eigen::VectorXd v_segment_rates = wells[w]->wellOps().p2s_gather * v_perf_rates; for (int i = 0; i < number_of_segments; ++i) { segphaserates_[np * (i + start_segment) + p] = v_segment_rates[i]; } } } start_segment += wellMapEntry.number_of_segments; start_perforation += wellMapEntry.number_of_perforations; } // Initialize current_controls_. // The controls set in the Wells object are treated as defaults, // and also used for initial values. currentControls().resize(nw); for (int w = 0; w < nw; ++w) { currentControls()[w] = well_controls_get_current(wells[w]->wellControls()); } // initialize wells that have been there before // order can change so the mapping is based on the well names if ( !(prevState.segmentedWellMap().empty()) ) { typedef typename SegmentedWellMapType::const_iterator const_iterator; const_iterator end_old = prevState.segmentedWellMap().end(); for (int w = 0; w < nw; ++w) { std::string well_name(wells[w]->name()); const_iterator it_old = prevState.segmentedWellMap().find(well_name); const_iterator it_this = segmentedWellMap().find(well_name); assert(it_this != segmentedWellMap().end()); // the current well must be present in the current well map if (it_old != end_old) { const int oldIndex = (*it_old).second.well_number; const int newIndex = w; // bhp bhp()[newIndex] = prevState.bhp()[oldIndex]; // well rates for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; iwellControls())) { // If the set of controls have changed, this may not be identical // to the last control, but it must be a valid control. currentControls()[ newIndex ] = old_control_index; } } } } } } std::vector& segPress() { return segpress_; } const std::vector& segPress() const { return segpress_; } std::vector& segPhaseRates() { return segphaserates_; } const std::vector& segPhaseRates() const { return segphaserates_; } const std::vector& topSegmentLoc() const { return top_segment_loc_; }; const SegmentedWellMapType& segmentedWellMap() const { return segmentedWellMap_; } SegmentedWellMapType& segmentedWellMap() { return segmentedWellMap_; } int numSegments() const { return nseg_; } int numPerforations() const { return nperf_; } private: // pressure for the segment nodes std::vector segpress_; // phase rates for the segments std::vector segphaserates_; // the location of the top segments within the whole segment list // it is better in the Wells class if we have a class instead of // using a vector for all the wells std::vector top_segment_loc_; SegmentedWellMapType segmentedWellMap_; int nseg_; int nperf_; }; } // namespace Opm #endif // OPM_WELLSTATEMULTISEGMENT_HEADER_INCLUDE