// $Id$ /***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis, Klaus Mosthaf * * Copyright (C) 2009 by Andreas Lauser * * Institute of Hydraulic Engineering * * University of Stuttgart, Germany * * email: .@iws.uni-stuttgart.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version, as long as this copyright notice * * is included in its original form. * * * * This program is distributed WITHOUT ANY WARRANTY. * *****************************************************************************/ #ifndef DUMUX_TUTORIALPROBLEM_COUPLED_HH #define DUMUX_TUTORIALPROBLEM_COUPLED_HH // fluid properties #include // the numerical model #include // the grid used #include #include // assign parameters dependent on space (e.g. spatial parameters) #include "tutorialspatialparameters_coupled.hh" namespace Dumux { // forward declaration of the problem class template class TutorialProblemCoupled; namespace Properties { // create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dumux::TutorialProblemCoupled type; }; // Set the grid SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/ { typedef Dune::SGrid<2,2> type; static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/ { typedef typename type::ctype ctype; Dune::FieldVector cellRes; Dune::FieldVector lowerLeft(0.0); Dune::FieldVector upperRight; cellRes[0] = 30; cellRes[1] = 10; upperRight[0] = 300; upperRight[1] = 60; return new Dune::SGrid<2,2>(cellRes, lowerLeft, upperRight); } }; // Set the wetting phase SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/ { private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:wettingPhase}@*/ }; // Set the non-wetting phase SET_PROP(TutorialProblemCoupled, NonwettingPhase) { private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/ }; /*@\label{tutorial-coupled:2p-system-end}@*/ // Set the spatial parameters SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/ { typedef Dumux::TutorialSpatialParametersCoupled type; }; // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ } // Definition of the actual problem template class TutorialProblemCoupled : public TwoPProblem /*@\label{tutorial-coupled:def-problem}@*/ { typedef TutorialProblemCoupled ThisType; typedef TwoPProblem ParentType; typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView; typedef typename GET_PROP_TYPE(TypeTag, PTAG(TimeManager)) TimeManager; // Grid and world dimension enum { dim = GridView::dimension, dimWorld = GridView::dimensionworld, }; typedef typename GridView::Grid::ctype CoordScalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices; typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim::Entity Vertex; typedef typename GridView::Intersection Intersection; typedef Dune::FieldVector LocalPosition; typedef Dune::FieldVector GlobalPosition; typedef typename GET_PROP_TYPE(TypeTag, PTAG(PrimaryVariables)) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, PTAG(BoundaryTypes)) BoundaryTypes; typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry; typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidSystem)) FluidSystem; public: TutorialProblemCoupled(TimeManager &timeManager, const GridView &gridView) : ParentType(timeManager, gridView) { // initialize the tables of the fluid system FluidSystem::init(); } /*! * \brief The problem name. * * This is used as a prefix for files generated by the simulation. */ const char *name() const { return "tutorial_coupled"; } // Return the temperature within the domain. We use 10 degrees Celsius. Scalar temperature(const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { return 283.15; }; // Specifies which kind of boundary condition should be used for // which equation on a given boundary segment. void boundaryTypes(BoundaryTypes &BCtype, const Vertex &vertex) const { const GlobalPosition &pos = vertex.geometry().center(); if (pos[0] < eps_) // dirichlet conditions on left boundary BCtype.setAllDirichlet(); else // neuman for the remaining boundaries BCtype.setAllNeumann(); } // Evaluate the boundary conditions for a dirichlet boundary // segment. For this method, the 'values' parameter stores // primary variables. void dirichlet(PrimaryVariables &values, const Vertex &vertex) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 0.0; // 0 % oil saturation on left boundary } // Evaluate the boundary conditions for a neumann boundary // segment. For this method, the 'values' parameter stores the // mass flux in normal direction of each phase. Negative values // mean influx. void neumann(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvElemGeom, const Intersection &isIt, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &pos = fvElemGeom.boundaryFace[boundaryFaceIdx].ipGlobal; Scalar right = this->bboxMax()[0]; if (pos[0] > right - eps_) { // oil outflux of 0.3 g/(m * s) on the right boundary of // the domain. values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 3e-4; } else { // no-flow on the remaining neumann-boundaries values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 0; } } // Evaluate the initial value for a control volume. For this // method, the 'values' parameter stores primary variables. void initial(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 1.0; } // Evaluate the source term for all phases within a given // sub-control-volume. For this method, the \a values parameter // stores the rate mass generated or annihilate per volume // unit. Positive values mean that mass is created, negative ones // mean that it vanishes. void source(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::contiWEqIdx] = 0.0; values[Indices::contiNEqIdx]= 0.0; } private: static const Scalar eps_ = 3e-6; }; } #endif