// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * \copydoc Opm::EclOutputBlackOilModule */ #ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH #define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm::Properties { // create new type tag for the Ecl-output namespace TTag { struct EclOutputBlackOil {}; } template struct ForceDisableFluidInPlaceOutput { using type = UndefinedProperty; }; template struct ForceDisableFluidInPlaceOutput { static constexpr bool value = false; }; } // namespace Opm::Properties namespace Opm { // forward declaration template class EcfvDiscretization; /*! * \ingroup EclBlackOilSimulator * * \brief Output module for the results black oil model writing in * ECL binary format. */ template class EclOutputBlackOilModule { using Simulator = GetPropType; using Discretization = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using ElementContext = GetPropType; using MaterialLaw = GetPropType; using MaterialLawParams = GetPropType; using FluidSystem = GetPropType; using GridView = GetPropType; using Element = typename GridView::template Codim<0>::Entity; using ElementIterator = typename GridView::template Codim<0>::Iterator; enum { numPhases = FluidSystem::numPhases }; enum { oilPhaseIdx = FluidSystem::oilPhaseIdx }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; enum { waterPhaseIdx = FluidSystem::waterPhaseIdx }; enum { gasCompIdx = FluidSystem::gasCompIdx }; enum { oilCompIdx = FluidSystem::oilCompIdx }; enum { enableEnergy = getPropValue() }; typedef std::vector ScalarBuffer; typedef std::vector StringBuffer; struct FipDataType { enum FipId { WaterInPlace = 0, //WIP OilInPlace = 1, //OIP GasInPlace = 2, //GIP OilInPlaceInLiquidPhase = 3, //OIPL OilInPlaceInGasPhase = 4, //OIPG GasInPlaceInLiquidPhase = 5, //GIPL GasInPlaceInGasPhase = 6, //GIPG PoreVolume = 7, //PV }; static const int numFipTypes = PoreVolume + 1 ; static std::string EclString(int fip_type) { switch(static_cast(fip_type)) { case FipDataType::WaterInPlace: return "WIP"; case FipDataType::OilInPlace: return "OIP"; case FipDataType::GasInPlace: return "GIP"; case FipDataType::OilInPlaceInLiquidPhase: return "OIPL"; case FipDataType::OilInPlaceInGasPhase: return "OIPG"; case FipDataType::GasInPlaceInLiquidPhase: return "GIPL"; case FipDataType::GasInPlaceInGasPhase: return "GIPG"; case FipDataType::PoreVolume: return "RPV"; } throw std::logic_error("fip_type: " + std::to_string(fip_type) + " not recognized"); } }; struct WellProdDataType { enum WPId { WellLocationi = 0, //WLi WellLocationj = 1, //WLj OilRate = 2, //OR WaterRate = 3, //WR GasRate = 4, //GR FluidResVol = 5, //FRV WaterCut = 6, //WC GasOilRatio = 7, //GOR WatGasRatio = 8, //WGR BHP = 9, //BHP THP = 10, //THP SteadyStatePI = 11, //SteadyStatePI WellName = 0, //WName CTRLMode = 1, //CTRL }; static const int numWPValues = 12; static const int numWPNames = 2; }; struct WellInjDataType { enum WIId { WellLocationi = 0, //WLi WellLocationj = 1, //WLj OilRate = 2, //OR WaterRate = 3, //WR GasRate = 4, //GR FluidResVol = 5, //FRV BHP = 6, //BHP THP = 7, //THP SteadyStateII = 8, //SteadyStateII WellName = 0, //WName CTRLModeOil = 1, //CTRLo CTRLModeWat = 2, //CTRLw CTRLModeGas = 3, //CTRLg }; static const int numWIValues = 9; static const int numWINames = 4; }; struct WellCumDataType { enum WCId { WellLocationi = 0, //WLi WellLocationj = 1, //WLj OilProd = 2, //OP WaterProd = 3, //WP GasProd = 4, //GP FluidResVolProd = 5, //FRVP OilInj = 6, //OI WaterInj = 7, //WI GasInj = 8, //GI FluidResVolInj = 9, //FRVI WellName = 0, //WName WellType = 1, //WType WellCTRL = 2, //WCTRL }; static const int numWCValues = 10; static const int numWCNames = 3; }; struct RegionSum { std::size_t ntFip; std::array regFipValues; ScalarBuffer regPressurePv; ScalarBuffer regPvHydrocarbon; ScalarBuffer regPressurePvHydrocarbon; std::array fieldFipValues; Scalar fieldPressurePv; Scalar fieldPvHydrocarbon; Scalar fieldPressurePvHydrocarbon; }; public: template EclOutputBlackOilModule(const Simulator& simulator, const CollectDataToIORankType& collectToIORank) : simulator_(simulator) { const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig(); const auto& fp = simulator_.vanguard().eclState().fieldProps(); this->regions_["FIPNUM"] = fp.get_int("FIPNUM"); for (const auto& region : summaryConfig.fip_regions()) this->regions_[region] = fp.get_int(region); for (auto& region_pair : this->regions_) createLocalRegion_(region_pair.second); this->RPRNodes_ = summaryConfig.keywords("RPR*"); this->RPRPNodes_ = summaryConfig.keywords("RPRP*"); for (int fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) { std::string key_pattern = "R" + FipDataType::EclString(fip_type) + "*"; this->regionNodes_[fip_type] = summaryConfig.keywords(key_pattern); } for (const auto& node: summaryConfig) { if (node.category() == SummaryConfigNode::Category::Block) { if (collectToIORank.isCartIdxOnThisRank(node.number() - 1)) { std::pair key = std::make_pair(node.keyword(), node.number()); blockData_[key] = 0.0; } } } forceDisableFipOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput); } /*! * \brief Register all run-time parameters for the Vtk output module. */ static void registerParameters() { EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput, "Do not print fluid-in-place values after each report step even if requested by the deck."); } /*! * \brief Allocate memory for the scalar fields we would like to * write to ECL output files */ void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log, const bool isRestart) { if (!std::is_same >::value) return; // Summary output is for all steps const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig(); // Only output RESTART_AUXILIARY asked for by the user. const Opm::RestartConfig& restartConfig = simulator_.vanguard().schedule().restart(); std::map rstKeywords = restartConfig.getRestartKeywords(reportStepNum); for (auto& [keyword, should_write] : rstKeywords) { if (this->isOutputCreationDirective_(keyword)) { // 'BASIC', 'FREQ' and similar. Don't attempt to create // cell-based output for these keywords and don't warn about // not being able to create such cell-based result vectors. should_write = 0; } else { should_write = restartConfig.getKeyword(keyword, reportStepNum); } } outputFipRestart_ = false; computeFip_ = false; // Fluid in place for (int i = 0; i 0) { rstKeywords["FIP"] = 0; outputFipRestart_ = true; } fip_[i].resize(bufferSize, 0.0); computeFip_ = true; } else fip_[i].clear(); } if (!substep || summaryConfig.hasKeyword("FPR") || summaryConfig.hasKeyword("FPRP") || !this->RPRNodes_.empty()) { fip_[FipDataType::PoreVolume].resize(bufferSize, 0.0); hydrocarbonPoreVolume_.resize(bufferSize, 0.0); pressureTimesPoreVolume_.resize(bufferSize, 0.0); pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0); } else { hydrocarbonPoreVolume_.clear(); pressureTimesPoreVolume_.clear(); pressureTimesHydrocarbonVolume_.clear(); } // Well RFT data if (!substep) { const auto& schedule = simulator_.vanguard().schedule(); const auto& rft_config = schedule.rftConfig(); for (const auto& well: schedule.getWells(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(well.name())) { continue; } if (!rft_config.active(reportStepNum)) continue; for (const auto& connection: well.getConnections()) { const size_t i = size_t(connection.getI()); const size_t j = size_t(connection.getJ()); const size_t k = size_t(connection.getK()); const size_t index = simulator_.vanguard().eclState().gridDims().getGlobalIndex(i, j, k); if (FluidSystem::phaseIsActive(oilPhaseIdx)) oilConnectionPressures_.emplace(std::make_pair(index, 0.0)); if (FluidSystem::phaseIsActive(waterPhaseIdx)) waterConnectionSaturations_.emplace(std::make_pair(index, 0.0)); if (FluidSystem::phaseIsActive(gasPhaseIdx)) gasConnectionSaturations_.emplace(std::make_pair(index, 0.0)); } } } // field data should be allocated // 1) when we want to restart // 2) when it is ask for by the user via restartConfig // 3) when it is not a substep if (!isRestart && (!restartConfig.getWriteRestartFile(reportStepNum, log) || substep)) return; // always output saturation of active phases for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; saturation_[phaseIdx].resize(bufferSize, 0.0); } // and oil pressure oilPressure_.resize(bufferSize, 0.0); rstKeywords["PRES"] = 0; rstKeywords["PRESSURE"] = 0; // allocate memory for temperature if (enableEnergy || rstKeywords["TEMP"]) { temperature_.resize(bufferSize, 0.0); rstKeywords["TEMP"] = 0; } if (FluidSystem::phaseIsActive(oilPhaseIdx)) rstKeywords["SOIL"] = 0; if (FluidSystem::phaseIsActive(gasPhaseIdx)) rstKeywords["SGAS"] = 0; if (FluidSystem::phaseIsActive(waterPhaseIdx)) rstKeywords["SWAT"] = 0; if (FluidSystem::enableDissolvedGas()) { rs_.resize(bufferSize, 0.0); rstKeywords["RS"] = 0; } if (FluidSystem::enableVaporizedOil()) { rv_.resize(bufferSize, 0.0); rstKeywords["RV"] = 0; } if (getPropValue()) sSol_.resize(bufferSize, 0.0); if (getPropValue()) cPolymer_.resize(bufferSize, 0.0); if (getPropValue()) cFoam_.resize(bufferSize, 0.0); if (getPropValue()) cSalt_.resize(bufferSize, 0.0); if (getPropValue()) { extboX_.resize(bufferSize, 0.0); extboY_.resize(bufferSize, 0.0); extboZ_.resize(bufferSize, 0.0); mFracOil_.resize(bufferSize, 0.0); mFracGas_.resize(bufferSize, 0.0); mFracCo2_.resize(bufferSize, 0.0); } if (simulator_.problem().vapparsActive()) soMax_.resize(bufferSize, 0.0); if (simulator_.problem().materialLawManager()->enableHysteresis()) { pcSwMdcOw_.resize(bufferSize, 0.0); krnSwMdcOw_.resize(bufferSize, 0.0); pcSwMdcGo_.resize(bufferSize, 0.0); krnSwMdcGo_.resize(bufferSize, 0.0); } if (simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT")) { ppcw_.resize(bufferSize, 0.0); rstKeywords["PPCW"] = 0; } if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) { rstKeywords["RSSAT"] = 0; gasDissolutionFactor_.resize(bufferSize, 0.0); } if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) { rstKeywords["RVSAT"] = 0; oilVaporizationFactor_.resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) { rstKeywords["BW"] = 0; invB_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) { rstKeywords["BO"] = 0; invB_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) { rstKeywords["BG"] = 0; invB_[gasPhaseIdx].resize(bufferSize, 0.0); } if (rstKeywords["DEN"] > 0) { rstKeywords["DEN"] = 0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; density_[phaseIdx].resize(bufferSize, 0.0); } } const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0); const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0); const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0); rstKeywords["VISC"] = 0; if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) { rstKeywords["VWAT"] = 0; viscosity_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) { rstKeywords["VOIL"] = 0; viscosity_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) { rstKeywords["VGAS"] = 0; viscosity_[gasPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) { rstKeywords["KRW"] = 0; relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) { rstKeywords["KRO"] = 0; relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) { rstKeywords["KRG"] = 0; relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0); } if (rstKeywords["PBPD"] > 0) { rstKeywords["PBPD"] = 0; bubblePointPressure_.resize(bufferSize, 0.0); dewPointPressure_.resize(bufferSize, 0.0); } // tracers const int numTracers = simulator_.problem().tracerModel().numTracers(); if (numTracers > 0){ tracerConcentrations_.resize(numTracers); for (int tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx) { tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0); } } // ROCKC if (rstKeywords["ROCKC"] > 0) { rstKeywords["ROCKC"] = 0; rockCompPorvMultiplier_.resize(bufferSize, 0.0); rockCompTransMultiplier_.resize(bufferSize, 0.0); swMax_.resize(bufferSize, 0.0); minimumOilPressure_.resize(bufferSize, 0.0); overburdenPressure_.resize(bufferSize, 0.0); } //Warn for any unhandled keyword if (log) { for (auto& keyValue: rstKeywords) { if (keyValue.second > 0) { std::string logstring = "Keyword '"; logstring.append(keyValue.first); logstring.append("' is unhandled for output to file."); Opm::OpmLog::warning("Unhandled output keyword", logstring); } } } failedCellsPb_.clear(); failedCellsPd_.clear(); // Not supported in flow legacy if (false) saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0); if (false) oilSaturationPressure_.resize(bufferSize, 0.0); } /*! * \brief Modify the internal buffers according to the intensive quanties relevant * for an element */ void processElement(const ElementContext& elemCtx) { if (!std::is_same >::value) return; const auto& problem = elemCtx.simulator().problem(); for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) { const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); typedef typename std::remove_const::type>::type FluidState; unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0); unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex(); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (saturation_[phaseIdx].size() == 0) continue; saturation_[phaseIdx][globalDofIdx] = Opm::getValue(fs.saturation(phaseIdx)); Opm::Valgrind::CheckDefined(saturation_[phaseIdx][globalDofIdx]); } if (oilPressure_.size() > 0) { if (FluidSystem::phaseIsActive(oilPhaseIdx)) { oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)); }else{ // put pressure in oil pressure for output if (FluidSystem::phaseIsActive(waterPhaseIdx)) { oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(waterPhaseIdx)); } else { oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(gasPhaseIdx)); } } Opm::Valgrind::CheckDefined(oilPressure_[globalDofIdx]); } if (temperature_.size() > 0) { temperature_[globalDofIdx] = Opm::getValue(fs.temperature(oilPhaseIdx)); Opm::Valgrind::CheckDefined(temperature_[globalDofIdx]); } if (gasDissolutionFactor_.size() > 0) { Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx); gasDissolutionFactor_[globalDofIdx] = FluidSystem::template saturatedDissolutionFactor(fs, oilPhaseIdx, pvtRegionIdx, SoMax); Opm::Valgrind::CheckDefined(gasDissolutionFactor_[globalDofIdx]); } if (oilVaporizationFactor_.size() > 0) { Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx); oilVaporizationFactor_[globalDofIdx] = FluidSystem::template saturatedDissolutionFactor(fs, gasPhaseIdx, pvtRegionIdx, SoMax); Opm::Valgrind::CheckDefined(oilVaporizationFactor_[globalDofIdx]); } if (gasFormationVolumeFactor_.size() > 0) { gasFormationVolumeFactor_[globalDofIdx] = 1.0/FluidSystem::template inverseFormationVolumeFactor(fs, gasPhaseIdx, pvtRegionIdx); Opm::Valgrind::CheckDefined(gasFormationVolumeFactor_[globalDofIdx]); } if (saturatedOilFormationVolumeFactor_.size() > 0) { saturatedOilFormationVolumeFactor_[globalDofIdx] = 1.0/FluidSystem::template saturatedInverseFormationVolumeFactor(fs, oilPhaseIdx, pvtRegionIdx); Opm::Valgrind::CheckDefined(saturatedOilFormationVolumeFactor_[globalDofIdx]); } if (oilSaturationPressure_.size() > 0) { oilSaturationPressure_[globalDofIdx] = FluidSystem::template saturationPressure(fs, oilPhaseIdx, pvtRegionIdx); Opm::Valgrind::CheckDefined(oilSaturationPressure_[globalDofIdx]); } if (rs_.size()) { rs_[globalDofIdx] = Opm::getValue(fs.Rs()); Opm::Valgrind::CheckDefined(rs_[globalDofIdx]); } if (rv_.size()) { rv_[globalDofIdx] = Opm::getValue(fs.Rv()); Opm::Valgrind::CheckDefined(rv_[globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (invB_[phaseIdx].size() == 0) continue; invB_[phaseIdx][globalDofIdx] = Opm::getValue(fs.invB(phaseIdx)); Opm::Valgrind::CheckDefined(invB_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (density_[phaseIdx].size() == 0) continue; density_[phaseIdx][globalDofIdx] = Opm::getValue(fs.density(phaseIdx)); Opm::Valgrind::CheckDefined(density_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (viscosity_[phaseIdx].size() == 0) continue; if (extboX_.size() > 0 && phaseIdx==oilPhaseIdx) viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.oilViscosity()); else if (extboX_.size() > 0 && phaseIdx==gasPhaseIdx) viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.gasViscosity()); else viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(fs.viscosity(phaseIdx)); Opm::Valgrind::CheckDefined(viscosity_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (relativePermeability_[phaseIdx].size() == 0) continue; relativePermeability_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.relativePermeability(phaseIdx)); Opm::Valgrind::CheckDefined(relativePermeability_[phaseIdx][globalDofIdx]); } if (sSol_.size() > 0) { sSol_[globalDofIdx] = intQuants.solventSaturation().value(); } if (cPolymer_.size() > 0) { cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value(); } if (cFoam_.size() > 0) { cFoam_[globalDofIdx] = intQuants.foamConcentration().value(); } if (cSalt_.size() > 0) { cSalt_[globalDofIdx] = fs.saltConcentration().value(); } if (extboX_.size() > 0) { extboX_[globalDofIdx] = intQuants.xVolume().value(); } if (extboY_.size() > 0) { extboY_[globalDofIdx] = intQuants.yVolume().value(); } if (extboZ_.size() > 0) { extboZ_[globalDofIdx] = intQuants.zFraction().value(); } if (mFracCo2_.size() > 0) { const Scalar stdVolOil = Opm::getValue(fs.saturation(oilPhaseIdx))*Opm::getValue(fs.invB(oilPhaseIdx)) + Opm::getValue(fs.saturation(gasPhaseIdx))*Opm::getValue(fs.invB(gasPhaseIdx))*Opm::getValue(fs.Rv()); const Scalar stdVolGas = Opm::getValue(fs.saturation(gasPhaseIdx))*Opm::getValue(fs.invB(gasPhaseIdx))*(1.0-intQuants.yVolume().value()) + Opm::getValue(fs.saturation(oilPhaseIdx))*Opm::getValue(fs.invB(oilPhaseIdx))*Opm::getValue(fs.Rs())*(1.0-intQuants.xVolume().value()); const Scalar stdVolCo2 = Opm::getValue(fs.saturation(gasPhaseIdx))*Opm::getValue(fs.invB(gasPhaseIdx))*intQuants.yVolume().value() + Opm::getValue(fs.saturation(oilPhaseIdx))*Opm::getValue(fs.invB(oilPhaseIdx))*Opm::getValue(fs.Rs())*intQuants.xVolume().value(); const Scalar rhoO= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx); const Scalar rhoG= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx); const Scalar rhoCO2= intQuants.zRefDensity(); const Scalar stdMassTotal= 1.0e-10 + stdVolOil*rhoO + stdVolGas*rhoG + stdVolCo2*rhoCO2; mFracOil_[globalDofIdx] = stdVolOil*rhoO/stdMassTotal; mFracGas_[globalDofIdx] = stdVolGas*rhoG/stdMassTotal; mFracCo2_[globalDofIdx] = stdVolCo2*rhoCO2/stdMassTotal; } if (bubblePointPressure_.size() > 0) { try { bubblePointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex())); } catch (const Opm::NumericalIssue&) { const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; failedCellsPb_.push_back(cartesianIdx); } } if (dewPointPressure_.size() > 0) { try { dewPointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex())); } catch (const Opm::NumericalIssue&) { const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; failedCellsPd_.push_back(cartesianIdx); } } if (soMax_.size() > 0) soMax_[globalDofIdx] = std::max(Opm::getValue(fs.saturation(oilPhaseIdx)), problem.maxOilSaturation(globalDofIdx)); if (swMax_.size() > 0) swMax_[globalDofIdx] = std::max(Opm::getValue(fs.saturation(waterPhaseIdx)), problem.maxWaterSaturation(globalDofIdx)); if (minimumOilPressure_.size() > 0) minimumOilPressure_[globalDofIdx] = std::min(Opm::getValue(fs.pressure(oilPhaseIdx)), problem.minOilPressure(globalDofIdx)); if (overburdenPressure_.size() > 0) overburdenPressure_[globalDofIdx] = problem.overburdenPressure(globalDofIdx); if (rockCompPorvMultiplier_.size() > 0) rockCompPorvMultiplier_[globalDofIdx] = problem.template rockCompPoroMultiplier(intQuants, globalDofIdx); if (rockCompTransMultiplier_.size() > 0) rockCompTransMultiplier_[globalDofIdx] = problem.template rockCompTransMultiplier(intQuants, globalDofIdx); const auto& matLawManager = problem.materialLawManager(); if (matLawManager->enableHysteresis()) { if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) { matLawManager->oilWaterHysteresisParams( pcSwMdcOw_[globalDofIdx], krnSwMdcOw_[globalDofIdx], globalDofIdx); } if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) { matLawManager->gasOilHysteresisParams( pcSwMdcGo_[globalDofIdx], krnSwMdcGo_[globalDofIdx], globalDofIdx); } } if (ppcw_.size() > 0) { ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow; //printf("ppcw_[%d] = %lg\n", globalDofIdx, ppcw_[globalDofIdx]); } // hack to make the intial output of rs and rv Ecl compatible. // For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step // where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite // rs and rv with the values computed in the initially. // Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values. // This can be removed when ebos has 100% controll over output if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) { const auto& fsInitial = problem.initialFluidState(globalDofIdx); // use initial rs and rv values if (rv_.size() > 0) rv_[globalDofIdx] = fsInitial.Rv(); if (rs_.size() > 0) rs_[globalDofIdx] = fsInitial.Rs(); // re-compute the volume factors, viscosities and densities if asked for if (density_[oilPhaseIdx].size() > 0) density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (density_[gasPhaseIdx].size() > 0) density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); if (invB_[oilPhaseIdx].size() > 0) invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (invB_[gasPhaseIdx].size() > 0) invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); if (viscosity_[oilPhaseIdx].size() > 0) viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (viscosity_[gasPhaseIdx].size() > 0) viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); } // Add fluid in Place values updateFluidInPlace_(elemCtx, dofIdx); // Adding block data const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; for (auto& val: blockData_) { const auto& key = val.first; int cartesianIdxBlock = key.second - 1; if (cartesianIdx == cartesianIdxBlock) { if (key.first == "BWSAT") val.second = Opm::getValue(fs.saturation(waterPhaseIdx)); else if (key.first == "BGSAT") val.second = Opm::getValue(fs.saturation(gasPhaseIdx)); else if (key.first == "BOSAT") val.second = 1. - Opm::getValue(fs.saturation(gasPhaseIdx)) - Opm::getValue(fs.saturation(waterPhaseIdx)); else if (key.first == "BPR") val.second = Opm::getValue(fs.pressure(oilPhaseIdx)); else if (key.first == "BWKR" || key.first == "BKRW") val.second = Opm::getValue(intQuants.relativePermeability(waterPhaseIdx)); else if (key.first == "BGKR" || key.first == "BKRG") val.second = Opm::getValue(intQuants.relativePermeability(gasPhaseIdx)); else if (key.first == "BOKR" || key.first == "BKRO") val.second = Opm::getValue(intQuants.relativePermeability(oilPhaseIdx)); else if (key.first == "BWPC") val.second = Opm::getValue(fs.pressure(oilPhaseIdx)) - Opm::getValue(fs.pressure(waterPhaseIdx)); else if (key.first == "BGPC") val.second = Opm::getValue(fs.pressure(gasPhaseIdx)) - Opm::getValue(fs.pressure(oilPhaseIdx)); else if (key.first == "BVWAT" || key.first == "BWVIS") val.second = Opm::getValue(fs.viscosity(waterPhaseIdx)); else if (key.first == "BVGAS" || key.first == "BGVIS") val.second = Opm::getValue(fs.viscosity(gasPhaseIdx)); else if (key.first == "BVOIL" || key.first == "BOVIS") val.second = Opm::getValue(fs.viscosity(oilPhaseIdx)); else { std::string logstring = "Keyword '"; logstring.append(key.first); logstring.append("' is unhandled for output to file."); Opm::OpmLog::warning("Unhandled output keyword", logstring); } } } // Adding Well RFT data if (oilConnectionPressures_.count(cartesianIdx) > 0) { oilConnectionPressures_[cartesianIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)); } if (waterConnectionSaturations_.count(cartesianIdx) > 0) { waterConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(waterPhaseIdx)); } if (gasConnectionSaturations_.count(cartesianIdx) > 0) { gasConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(gasPhaseIdx)); } // tracers const auto& tracerModel = simulator_.problem().tracerModel(); if (tracerConcentrations_.size()>0) { for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){ if (tracerConcentrations_[tracerIdx].size() == 0) continue; tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx); } } } } void outputErrorLog() { const size_t maxNumCellsFaillog = 20; int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size(); std::vector displPb, displPd, recvLenPb, recvLenPd; const auto& comm = simulator_.gridView().comm(); if (isIORank_()) { displPb.resize(comm.size()+1, 0); displPd.resize(comm.size()+1, 0); recvLenPb.resize(comm.size()); recvLenPd.resize(comm.size()); } comm.gather(&pbSize, recvLenPb.data(), 1, 0); comm.gather(&pdSize, recvLenPd.data(), 1, 0); std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1); std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1); std::vector globalFailedCellsPb, globalFailedCellsPd; if (isIORank_()) { globalFailedCellsPb.resize(displPb.back()); globalFailedCellsPd.resize(displPd.back()); } comm.gatherv(failedCellsPb_.data(), static_cast(failedCellsPb_.size()), globalFailedCellsPb.data(), recvLenPb.data(), displPb.data(), 0); comm.gatherv(failedCellsPd_.data(), static_cast(failedCellsPd_.size()), globalFailedCellsPd.data(), recvLenPd.data(), displPd.data(), 0); std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end()); std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end()); if (globalFailedCellsPb.size() > 0) { std::stringstream errlog; errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells ["; errlog << globalFailedCellsPb[0]; const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size()); for (size_t i = 1; i < maxElems; ++i) { errlog << ", " << globalFailedCellsPb[i]; } if (globalFailedCellsPb.size() > maxNumCellsFaillog) { errlog << ", ..."; } errlog << "]"; Opm::OpmLog::warning("Bubble point numerical problem", errlog.str()); } if (globalFailedCellsPd.size() > 0) { std::stringstream errlog; errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells ["; errlog << globalFailedCellsPd[0]; const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size()); for (size_t i = 1; i < maxElems; ++i) { errlog << ", " << globalFailedCellsPd[i]; } if (globalFailedCellsPd.size() > maxNumCellsFaillog) { errlog << ", ..."; } errlog << "]"; Opm::OpmLog::warning("Dew point numerical problem", errlog.str()); } } void addRftDataToWells(Opm::data::Wells& wellDatas, size_t reportStepNum) { const auto& schedule = simulator_.vanguard().schedule(); const auto& rft_config = schedule.rftConfig(); for (const auto& well: schedule.getWells(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(well.name())) { continue; } //add data infrastructure for shut wells if (!wellDatas.count(well.name())) { Opm::data::Well wellData; if (!rft_config.active(reportStepNum)) continue; wellData.connections.resize(well.getConnections().size()); size_t count = 0; for (const auto& connection: well.getConnections()) { const size_t i = size_t(connection.getI()); const size_t j = size_t(connection.getJ()); const size_t k = size_t(connection.getK()); const size_t index = simulator_.vanguard().eclState().gridDims().getGlobalIndex(i, j, k); auto& connectionData = wellData.connections[count]; connectionData.index = index; count++; } wellDatas.emplace(std::make_pair(well.name(), wellData)); } Opm::data::Well& wellData = wellDatas.at(well.name()); for (auto& connectionData: wellData.connections) { const auto index = connectionData.index; if (oilConnectionPressures_.count(index) > 0) connectionData.cell_pressure = oilConnectionPressures_.at(index); if (waterConnectionSaturations_.count(index) > 0) connectionData.cell_saturation_water = waterConnectionSaturations_.at(index); if (gasConnectionSaturations_.count(index) > 0) connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index); } } oilConnectionPressures_.clear(); waterConnectionSaturations_.clear(); gasConnectionSaturations_.clear(); } /*! * \brief Move all buffers to data::Solution. */ void assignToSolution(Opm::data::Solution& sol) { if (!std::is_same>::value) return; if (oilPressure_.size() > 0) { sol.insert("PRESSURE", Opm::UnitSystem::measure::pressure, std::move(oilPressure_), Opm::data::TargetType::RESTART_SOLUTION); } if (temperature_.size() > 0) { sol.insert("TEMP", Opm::UnitSystem::measure::temperature, std::move(temperature_), Opm::data::TargetType::RESTART_SOLUTION); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && saturation_[waterPhaseIdx].size() > 0) { sol.insert("SWAT", Opm::UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && saturation_[gasPhaseIdx].size() > 0) { sol.insert("SGAS", Opm::UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION); } if (ppcw_.size() > 0) { sol.insert ("PPCW", Opm::UnitSystem::measure::pressure, std::move(ppcw_), Opm::data::TargetType::RESTART_SOLUTION); } if (gasDissolutionFactor_.size() > 0) { sol.insert("RSSAT", Opm::UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), Opm::data::TargetType::RESTART_AUXILIARY); } if (oilVaporizationFactor_.size() > 0) { sol.insert("RVSAT", Opm::UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), Opm::data::TargetType::RESTART_AUXILIARY); } if (rs_.size() > 0) { sol.insert("RS", Opm::UnitSystem::measure::gas_oil_ratio, std::move(rs_), Opm::data::TargetType::RESTART_SOLUTION); } if (rv_.size() > 0) { sol.insert("RV", Opm::UnitSystem::measure::oil_gas_ratio, std::move(rv_), Opm::data::TargetType::RESTART_SOLUTION); } if (invB_[waterPhaseIdx].size() > 0) { sol.insert("1OVERBW", Opm::UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (invB_[oilPhaseIdx].size() > 0) { sol.insert("1OVERBO", Opm::UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (invB_[gasPhaseIdx].size() > 0) { sol.insert("1OVERBG", Opm::UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (density_[waterPhaseIdx].size() > 0) { sol.insert("WAT_DEN", Opm::UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (density_[oilPhaseIdx].size() > 0) { sol.insert("OIL_DEN", Opm::UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (density_[gasPhaseIdx].size() > 0) { sol.insert("GAS_DEN", Opm::UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (viscosity_[waterPhaseIdx].size() > 0) { sol.insert("WAT_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (viscosity_[oilPhaseIdx].size() > 0) { sol.insert("OIL_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (viscosity_[gasPhaseIdx].size() > 0) { sol.insert("GAS_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (relativePermeability_[waterPhaseIdx].size() > 0) { sol.insert("WATKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (relativePermeability_[oilPhaseIdx].size() > 0) { sol.insert("OILKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (relativePermeability_[gasPhaseIdx].size() > 0) { sol.insert("GASKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (pcSwMdcOw_.size() > 0) sol.insert ("PCSWM_OW", Opm::UnitSystem::measure::identity, std::move(pcSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY); if (krnSwMdcOw_.size() > 0) sol.insert ("KRNSW_OW", Opm::UnitSystem::measure::identity, std::move(krnSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY); if (pcSwMdcGo_.size() > 0) sol.insert ("PCSWM_GO", Opm::UnitSystem::measure::identity, std::move(pcSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY); if (krnSwMdcGo_.size() > 0) sol.insert ("KRNSW_GO", Opm::UnitSystem::measure::identity, std::move(krnSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY); if (soMax_.size() > 0) sol.insert ("SOMAX", Opm::UnitSystem::measure::identity, std::move(soMax_), Opm::data::TargetType::RESTART_SOLUTION); if (sSol_.size() > 0) sol.insert ("SSOLVENT", Opm::UnitSystem::measure::identity, std::move(sSol_), Opm::data::TargetType::RESTART_SOLUTION); if (extboX_.size() > 0) sol.insert ("SS_X", Opm::UnitSystem::measure::identity, std::move(extboX_), Opm::data::TargetType::RESTART_SOLUTION); if (extboY_.size() > 0) sol.insert ("SS_Y", Opm::UnitSystem::measure::identity, std::move(extboY_), Opm::data::TargetType::RESTART_SOLUTION); if (extboZ_.size() > 0) sol.insert ("SS_Z", Opm::UnitSystem::measure::identity, std::move(extboZ_), Opm::data::TargetType::RESTART_SOLUTION); if (mFracOil_.size() > 0) sol.insert ("STD_OIL", Opm::UnitSystem::measure::identity, std::move(mFracOil_), Opm::data::TargetType::RESTART_SOLUTION); if (mFracGas_.size() > 0) sol.insert ("STD_GAS", Opm::UnitSystem::measure::identity, std::move(mFracGas_), Opm::data::TargetType::RESTART_SOLUTION); if (mFracCo2_.size() > 0) sol.insert ("STD_CO2", Opm::UnitSystem::measure::identity, std::move(mFracCo2_), Opm::data::TargetType::RESTART_SOLUTION); if (cPolymer_.size() > 0) sol.insert ("POLYMER", Opm::UnitSystem::measure::identity, std::move(cPolymer_), Opm::data::TargetType::RESTART_SOLUTION); if (cFoam_.size() > 0) sol.insert ("FOAM", Opm::UnitSystem::measure::identity, std::move(cFoam_), Opm::data::TargetType::RESTART_SOLUTION); if (cSalt_.size() > 0) sol.insert ("SALT", Opm::UnitSystem::measure::salinity, std::move(cSalt_), Opm::data::TargetType::RESTART_SOLUTION); if (dewPointPressure_.size() > 0) sol.insert ("PDEW", Opm::UnitSystem::measure::pressure, std::move(dewPointPressure_), Opm::data::TargetType::RESTART_AUXILIARY); if (bubblePointPressure_.size() > 0) sol.insert ("PBUB", Opm::UnitSystem::measure::pressure, std::move(bubblePointPressure_), Opm::data::TargetType::RESTART_AUXILIARY); if (swMax_.size() > 0) sol.insert ("SWMAX", Opm::UnitSystem::measure::identity, std::move(swMax_), Opm::data::TargetType::RESTART_SOLUTION); if (minimumOilPressure_.size() > 0) sol.insert ("PRESROCC", Opm::UnitSystem::measure::pressure, std::move(minimumOilPressure_), Opm::data::TargetType::RESTART_SOLUTION); if (overburdenPressure_.size() > 0) sol.insert ("PRES_OVB", Opm::UnitSystem::measure::pressure, std::move(overburdenPressure_), Opm::data::TargetType::RESTART_SOLUTION); if (rockCompPorvMultiplier_.size() > 0) sol.insert ("PORV_RC", Opm::UnitSystem::measure::identity, std::move(rockCompPorvMultiplier_), Opm::data::TargetType::RESTART_SOLUTION); if (rockCompTransMultiplier_.size() > 0) sol.insert ("TMULT_RC", Opm::UnitSystem::measure::identity, std::move(rockCompTransMultiplier_), Opm::data::TargetType::RESTART_SOLUTION); // Fluid in place for (int i = 0; i 0) { sol.insert(FipDataType::EclString(i), Opm::UnitSystem::measure::volume, fip_[i], Opm::data::TargetType::SUMMARY); } } // tracers const auto& tracerModel = simulator_.problem().tracerModel(); if (tracerConcentrations_.size() > 0) { for (int tracerIdx = 0; tracerIdx& region) { const auto max_value = region.empty() ? 0 : *std::max_element(region.begin(), region.end()); return this->simulator_.gridView().comm().max(max_value); } RegionSum makeRegionSum(const std::vector& region, bool is_fipnum) { RegionSum rsum; rsum.ntFip = this->regionMax(region); // sum values over each region rsum.regPressurePv = this->regionSum(this->pressureTimesPoreVolume_, region, rsum.ntFip); rsum.regPvHydrocarbon = this->regionSum(this->hydrocarbonPoreVolume_, region, rsum.ntFip); rsum.regPressurePvHydrocarbon = this->regionSum(pressureTimesHydrocarbonVolume_, region, rsum.ntFip); for (int fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) rsum.regFipValues[fip_type] = this->regionSum(this->fip_[fip_type], region, rsum.ntFip); // sum all region values to compute the field total rsum.fieldPressurePv = sum(rsum.regPressurePv); rsum.fieldPvHydrocarbon = sum(rsum.regPvHydrocarbon); rsum.fieldPressurePvHydrocarbon = sum(rsum.regPressurePvHydrocarbon); for (int fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) { const auto& regionFip = rsum.regFipValues[fip_type]; rsum.fieldFipValues[fip_type] = sum(regionFip); } if (is_fipnum) { // The first time the outputFipLog function is run we store the inplace values in // the initialInplace_ member. This has at least two problems: // // o We really want the *initial* value - now we get the value after // the first timestep. // // o For restarted runs this is obviously wrong. // // Finally it is of course not desirable to mutate state in an output // routine. if (!this->regionInitialInplace_) { this->regionInitialInplace_.emplace(); for (int fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) this->regionInitialInplace_.value()[fip_type] = rsum.regFipValues[fip_type]; } if (!this->fieldInitialInplace_) this->fieldInitialInplace_ = rsum.fieldFipValues; } return rsum; } std::unordered_map accumulateRegionSums() { std::unordered_map rsum_map; const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig(); rsum_map.emplace("FIPNUM", makeRegionSum(this->regions_.at("FIPNUM"), true)); for (const auto& fip_region : summaryConfig.fip_regions()) { if (fip_region == "FIPNUM") continue; const auto& region = this->regions_.at(fip_region); rsum_map.emplace(fip_region, makeRegionSum(region, false)); } return rsum_map; } Scalar sum(const ScalarBuffer& v) { return std::accumulate(v.begin(), v.end(), Scalar{0}); } void updateSummaryRegionValues(const std::unordered_map& rsum_map, std::map& miscSummaryData, std::map>& regionData) const { const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig(); // The field summary vectors should only use the FIPNUM based region sum. { const auto& rsum = rsum_map.at("FIPNUM"); for (int fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) { std::string key = "F" + FipDataType::EclString(fip_type); if (summaryConfig.hasKeyword(key)) miscSummaryData[key] = rsum.fieldFipValues[fip_type]; } if (summaryConfig.hasKeyword("FOE") && this->fieldInitialInplace_) miscSummaryData["FOE"] = rsum.fieldFipValues[FipDataType::OilInPlace] / this->fieldInitialInplace_.value()[FipDataType::OilInPlace]; if (summaryConfig.hasKeyword("FPR")) miscSummaryData["FPR"] = pressureAverage_(rsum.fieldPressurePvHydrocarbon, rsum.fieldPvHydrocarbon, rsum.fieldPressurePv, rsum.fieldFipValues[FipDataType::PoreVolume], true); if (summaryConfig.hasKeyword("FPRP")) miscSummaryData["FPRP"] = pressureAverage_(rsum.fieldPressurePvHydrocarbon, rsum.fieldPvHydrocarbon, rsum.fieldPressurePv, rsum.fieldFipValues[FipDataType::PoreVolume], false); } // The region summary vectors should loop through the FIPxxx regions to // support the RPR__xxx summary keywords. { for (int fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) { for (const auto& node : this->regionNodes_[fip_type]) { const auto& rsum = rsum_map.at(node.fip_region()); regionData[node.keyword()] = rsum.regFipValues[fip_type]; } } // The exact same quantity is calculated for RPR and RPRP - is that correct? for (const auto& node : this->RPRNodes_) { const auto& rsum = rsum_map.at(node.fip_region()); regionData[node.keyword()] = pressureAverage_(rsum.regPressurePvHydrocarbon, rsum.regPvHydrocarbon, rsum.regPressurePv, rsum.regFipValues[FipDataType::PoreVolume], true); } for (const auto& node : this->RPRPNodes_) { const auto& rsum = rsum_map.at(node.fip_region()); regionData[node.keyword()] = pressureAverage_(rsum.regPressurePvHydrocarbon, rsum.regPvHydrocarbon, rsum.regPressurePv, rsum.regFipValues[FipDataType::PoreVolume], false); } } } void outputFipLogImpl(const RegionSum& rsum) const { { Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(rsum.fieldPressurePvHydrocarbon, rsum.fieldPvHydrocarbon, rsum.fieldPressurePv, rsum.fieldFipValues[FipDataType::PoreVolume], true); std::array initial_values = *this->fieldInitialInplace_; std::array current_values = rsum.fieldFipValues; fipUnitConvert_(initial_values); fipUnitConvert_(current_values); pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure); outputRegionFluidInPlace_(initial_values, current_values, fieldHydroCarbonPoreVolumeAveragedPressure); } for (size_t reg = 0; reg < rsum.ntFip; ++reg) { std::array initial_values; std::array current_values; for (std::size_t fip_type = 0; fip_type < FipDataType::numFipTypes; fip_type++) { initial_values[fip_type] = this->regionInitialInplace_.value()[fip_type][reg]; current_values[fip_type] = rsum.regFipValues[fip_type][reg]; } fipUnitConvert_(initial_values); fipUnitConvert_(current_values); Scalar regHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(rsum.regPressurePvHydrocarbon[reg], rsum.regPvHydrocarbon[reg], rsum.regPressurePv[reg], rsum.regFipValues[FipDataType::PoreVolume][reg], true); pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure); outputRegionFluidInPlace_(initial_values, current_values, regHydroCarbonPoreVolumeAveragedPressure, reg + 1); } } // write Fluid In Place to output log void outputFipLog(std::map& miscSummaryData, std::map>& regionData, const bool substep) { auto rsum_map = this->accumulateRegionSums(); if (!isIORank_()) return; updateSummaryRegionValues(rsum_map, miscSummaryData, regionData); if (!substep) outputFipLogImpl(rsum_map.at("FIPNUM")); } // write production report to output void outputProdLog(size_t reportStepNum, const bool substep, bool forceDisableProdOutput) { if (!substep) { ScalarBuffer tmp_values(WellProdDataType::numWPValues, 0.0); StringBuffer tmp_names(WellProdDataType::numWPNames, ""); outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput); const auto& st = simulator_.vanguard().summaryState(); const auto& schedule = simulator_.vanguard().schedule(); for (const auto& gname: schedule.groupNames()) { auto gName = static_cast(gname); auto get = [&st, &gName](const std::string& vector) { const auto key = vector + ':' + gName; return st.has(key) ? st.get(key) : 0.0; }; tmp_names[0] = gname; tmp_values[2] = get("GOPR"); //WellProdDataType::OilRate tmp_values[3] = get("GWPR"); //WellProdDataType::WaterRate tmp_values[4] = get("GGPR"); //WellProdDataType::GasRate tmp_values[5] = get("GVPR"); //WellProdDataType::FluidResVol tmp_values[6] = get("GWCT"); //WellProdDataType::WaterCut tmp_values[7] = get("GGOR"); //WellProdDataType::GasOilRatio tmp_values[8] = get("GWPR")/get("GGPR"); //WellProdDataType::WaterGasRatio outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput); } for (const auto& wname: schedule.wellNames(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(wname)) { continue; } const auto& well = schedule.getWell(wname, reportStepNum); // Ignore injector wells if (well.isInjector()){ continue; } tmp_names[0] = wname;//WellProdDataType::WellName auto wName = static_cast(wname); auto get = [&st, &wName](const std::string& vector) { const auto key = vector + ':' + wName; return st.has(key) ? st.get(key) : 0.0; }; const auto& controls = well.productionControls(st); using CMode = ::Opm::Well::ProducerCMode; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::ORAT: return "ORAT"; case CMode::WRAT: return "WRAT"; case CMode::GRAT: return "GRAT"; case CMode::LRAT: return "LRAT"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::CRAT: return "CRate"; case CMode::GRUP: return "GRUP"; default: { return "none"; } } }; tmp_names[1] = fctl(controls.cmode); //WellProdDataType::CTRLMode tmp_values[0] = well.getHeadI() + 1;//WellProdDataType::WellLocationi tmp_values[1] = well.getHeadJ() + 1;//WellProdDataType::WellLocationj tmp_values[2] = get("WOPR"); //WellProdDataType::OilRate tmp_values[3] = get("WWPR"); //WellProdDataType::WaterRate tmp_values[4] = get("WGPR"); //WellProdDataType::GasRate tmp_values[5] = get("WVPR"); //WellProdDataType::FluidResVol tmp_values[6] = get("WWCT"); //WellProdDataType::WaterCut tmp_values[7] = get("WGOR"); //WellProdDataType::GasOilRatio tmp_values[8] = get("WWPR")/get("WGPR"); //WellProdDataType::WaterGasRatio tmp_values[9] = get("WBHP"); //WellProdDataType::BHP tmp_values[10] = get("WTHP"); //WellProdDataType::THP //tmp_values[11] = 0; //WellProdDataType::SteadyStatePI // outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput); } } } // write injection report to output void outputInjLog(size_t reportStepNum, const bool substep, bool forceDisableInjOutput) { if (!substep) { ScalarBuffer tmp_values(WellInjDataType::numWIValues, 0.0); StringBuffer tmp_names(WellInjDataType::numWINames, ""); outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput); const auto& st = simulator_.vanguard().summaryState(); const auto& schedule = simulator_.vanguard().schedule(); for (const auto& gname: schedule.groupNames()) { auto gName = static_cast(gname); auto get = [&st, &gName](const std::string& vector) { const auto key = vector + ':' + gName; return st.has(key) ? st.get(key) : 0.0; }; tmp_names[0] = gname; tmp_values[2] = get("GOIR");//WellInjDataType::OilRate tmp_values[3] = get("GWIR"); //WellInjDataType::WaterRate tmp_values[4] = get("GGIR"); //WellInjDataType::GasRate tmp_values[5] = get("GVIR");//WellInjDataType::FluidResVol outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput); } for (const auto& wname: schedule.wellNames(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(wname)) { continue; } const auto& well = schedule.getWell(wname, reportStepNum); // Ignore Producer wells if (well.isProducer()){ continue; } tmp_names[0] = wname; //WellInjDataType::WellName auto wName = static_cast(wname); auto get = [&st, &wName](const std::string& vector) { const auto key = vector + ':' + wName; return st.has(key) ? st.get(key) : 0.0; }; const auto& controls = well.injectionControls(st); const auto ctlMode = controls.cmode; const auto injType = controls.injector_type; using CMode = ::Opm::Well::InjectorCMode; using WType = ::Opm::InjectorType; auto ftype = [](const auto wtype) -> std::string { switch (wtype) { case WType::OIL: return "Oil"; case WType::WATER: return "Wat"; case WType::GAS: return "Gas"; case WType::MULTI: return "Multi"; default: { return ""; } } }; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::RATE: return "RATE"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::GRUP: return "GRUP"; default: { return ""; } } }; const auto flowtype = ftype(injType); const auto flowctl = fctl(ctlMode); if(flowtype == "Oil") //WellInjDataType::CTRLModeOil { if (flowctl == "RATE"){ tmp_names[1] = "ORAT"; } else { tmp_names[1] = flowctl; } } else if (flowtype == "Wat") //WellInjDataType::CTRLModeWat { if (flowctl == "RATE"){ tmp_names[3] = "WRAT"; } else { tmp_names[2] = flowctl; } } else if (flowtype == "Gas") //WellInjDataType::CTRLModeGas { if (flowctl == "RATE"){ tmp_names[3] = "GRAT"; } else { tmp_names[3] = flowctl; } } tmp_values[0] = well.getHeadI() + 1; //WellInjDataType::wellLocationi tmp_values[1] = well.getHeadJ() + 1; //WellInjDataType::wellLocationj tmp_values[2] = get("WOIR"); //WellInjDataType::OilRate tmp_values[3] = get("WWIR"); //WellInjDataType::WaterRate tmp_values[4] = get("WGIR"); //WellInjDataType::GasRate tmp_values[5] = get("WVIR");//WellInjDataType::FluidResVol tmp_values[6] = get("WBHP"); //WellInjDataType::BHP tmp_values[7] = get("WTHP"); //WellInjDataType::THP //tmp_values[8] = 0; //WellInjDataType::SteadyStateII outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput); } } } // write cumulative production and injection reports to output void outputCumLog(size_t reportStepNum, const bool substep, bool forceDisableCumOutput) { if (!substep) { ScalarBuffer tmp_values(WellCumDataType::numWCValues, 0.0); StringBuffer tmp_names(WellCumDataType::numWCNames, ""); outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput); const auto& st = simulator_.vanguard().summaryState(); const auto& schedule = simulator_.vanguard().schedule(); for (const auto& gname: schedule.groupNames()) { auto gName = static_cast(gname); auto get = [&st, &gName](const std::string& vector) { const auto key = vector + ':' + gName; return st.has(key) ? st.get(key) : 0.0; }; tmp_names[0] = gname; tmp_values[2] = get("GOPT"); //WellCumDataType::OilProd tmp_values[3] = get("GWPT"); //WellCumDataType::WaterProd tmp_values[4] = get("GGPT"); //WellCumDataType::GasProd tmp_values[5] = get("GVPT");//WellCumDataType::FluidResVolProd tmp_values[6] = get("GOIT"); //WellCumDataType::OilInj tmp_values[7] = get("GWIT"); //WellCumDataType::WaterInj tmp_values[8] = get("GGIT"); //WellCumDataType::GasInj tmp_values[9] = get("GVIT");//WellCumDataType::FluidResVolInj outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput); } for (const auto& wname : schedule.wellNames(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(wname)) { continue; } const auto& well = schedule.getWell(wname, reportStepNum); tmp_names[0] = wname; //WellCumDataType::WellName auto wName = static_cast(wname); auto get = [&st, &wName](const std::string& vector) { const auto key = vector + ':' + wName; return st.has(key) ? st.get(key) : 0.0; }; if (well.isInjector()) { const auto& controls = well.injectionControls(st); const auto ctlMode = controls.cmode; const auto injType = controls.injector_type; using CMode = ::Opm::Well::InjectorCMode; using WType = ::Opm::InjectorType; auto ftype = [](const auto wtype) -> std::string { switch (wtype) { case WType::OIL: return "Oil"; case WType::WATER: return "Wat"; case WType::GAS: return "Gas"; case WType::MULTI: return "Multi"; default: { return ""; } } }; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::RATE: return "RATE"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::GRUP: return "GRUP"; default: { return ""; } } }; tmp_names[1] = "INJ"; //WellCumDataType::WellType const auto flowctl = fctl(ctlMode); if (flowctl == "RATE") //WellCumDataType::WellCTRL { const auto flowtype = ftype(injType); if(flowtype == "Oil"){ tmp_names[2] = "ORAT"; } else if(flowtype == "Wat"){ tmp_names[2] = "WRAT"; } else if(flowtype == "Gas"){ tmp_names[2] = "GRAT"; } } else { tmp_names[2] = flowctl; } } else if (well.isProducer()) { const auto& controls = well.productionControls(st); using CMode = ::Opm::Well::ProducerCMode; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::ORAT: return "ORAT"; case CMode::WRAT: return "WRAT"; case CMode::GRAT: return "GRAT"; case CMode::LRAT: return "LRAT"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::CRAT: return "CRAT"; case CMode::GRUP: return "GRUP"; default: { return "none"; } } }; tmp_names[1] = "PROD"; //WellProdDataType::CTRLMode tmp_names[2] = fctl(controls.cmode); //WellProdDataType::CTRLMode } tmp_values[0] = well.getHeadI() + 1; //WellCumDataType::wellLocationi tmp_values[1] = well.getHeadJ() + 1; //WellCumDataType::wellLocationj tmp_values[2] = get("WOPT"); //WellCumDataType::OilProd tmp_values[3] = get("WWPT"); //WellCumDataType::WaterProd tmp_values[4] = get("WGPT"); //WellCumDataType::GasProd tmp_values[5] = get("WVPT");//WellCumDataType::FluidResVolProd tmp_values[6] = get("WOIT"); //WellCumDataType::OilInj tmp_values[7] = get("WWIT"); //WellCumDataType::WaterInj tmp_values[8] = get("WGIT"); //WellCumDataType::GasInj tmp_values[9] = get("WVIT");//WellCumDataType::FluidResVolInj outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput); } } } void setRestart(const Opm::data::Solution& sol, unsigned elemIdx, unsigned globalDofIndex) { Scalar so = 1.0; if (saturation_[waterPhaseIdx].size() > 0 && sol.has("SWAT")) { saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex]; so -= sol.data("SWAT")[globalDofIndex]; } if (saturation_[gasPhaseIdx].size() > 0 && sol.has("SGAS")) { saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex]; so -= sol.data("SGAS")[globalDofIndex]; } if (sSol_.size() > 0) { // keep the SSOL option for backward compatibility // should be removed after 10.2018 release if (sol.has("SSOL")) sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex]; else if (sol.has("SSOLVENT")) sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex]; so -= sSol_[elemIdx]; } assert(saturation_[oilPhaseIdx].size() > 0); saturation_[oilPhaseIdx][elemIdx] = so; if (oilPressure_.size() > 0 && sol.has("PRESSURE")) oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex]; if (temperature_.size() > 0 && sol.has("TEMP")) temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex]; if (rs_.size() > 0 && sol.has("RS")) rs_[elemIdx] = sol.data("RS")[globalDofIndex]; if (rv_.size() > 0 && sol.has("RV")) rv_[elemIdx] = sol.data("RV")[globalDofIndex]; if (cPolymer_.size() > 0 && sol.has("POLYMER")) cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex]; if (cFoam_.size() > 0 && sol.has("FOAM")) cFoam_[elemIdx] = sol.data("FOAM")[globalDofIndex]; if (cSalt_.size() > 0 && sol.has("SALT")) cSalt_[elemIdx] = sol.data("SALT")[globalDofIndex]; if (soMax_.size() > 0 && sol.has("SOMAX")) soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex]; if (pcSwMdcOw_.size() > 0 &&sol.has("PCSWM_OW")) pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex]; if (krnSwMdcOw_.size() > 0 && sol.has("KRNSW_OW")) krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex]; if (pcSwMdcGo_.size() > 0 && sol.has("PCSWM_GO")) pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex]; if (krnSwMdcGo_.size() > 0 && sol.has("KRNSW_GO")) krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex]; if (ppcw_.size() > 0 && sol.has("PPCW")) ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex]; } template void assignToFluidState(FluidState& fs, unsigned elemIdx) const { for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (saturation_[phaseIdx].size() == 0) continue; fs.setSaturation(phaseIdx, saturation_[phaseIdx][elemIdx]); } if (oilPressure_.size() > 0) { // this assumes that capillary pressures only depend on the phase saturations // and possibly on temperature. (this is always the case for ECL problems.) Dune::FieldVector< Scalar, numPhases > pc(0); const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx); MaterialLaw::capillaryPressures(pc, matParams, fs); Opm::Valgrind::CheckDefined(oilPressure_[elemIdx]); Opm::Valgrind::CheckDefined(pc); assert(FluidSystem::phaseIsActive(oilPhaseIdx)); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; fs.setPressure(phaseIdx, oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx])); } } if (temperature_.size() > 0) fs.setTemperature(temperature_[elemIdx]); if (rs_.size() > 0) fs.setRs(rs_[elemIdx]); if (rv_.size() > 0) fs.setRv(rv_[elemIdx]); } void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const { if (soMax_.size() > 0) simulator.problem().setMaxOilSaturation(elemIdx, soMax_[elemIdx]); if (simulator.problem().materialLawManager()->enableHysteresis()) { auto matLawManager = simulator.problem().materialLawManager(); if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) { matLawManager->setOilWaterHysteresisParams( pcSwMdcOw_[elemIdx], krnSwMdcOw_[elemIdx], elemIdx); } if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) { matLawManager->setGasOilHysteresisParams( pcSwMdcGo_[elemIdx], krnSwMdcGo_[elemIdx], elemIdx); } } if (simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT")) { auto oilWaterScaledEpsInfoDrainage = simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainagePointerReferenceHack(elemIdx); oilWaterScaledEpsInfoDrainage->maxPcow = ppcw_[elemIdx]; } } Scalar getSolventSaturation(unsigned elemIdx) const { if (sSol_.size() > elemIdx) return sSol_[elemIdx]; return 0; } Scalar getPolymerConcentration(unsigned elemIdx) const { if (cPolymer_.size() > elemIdx) return cPolymer_[elemIdx]; return 0; } Scalar getFoamConcentration(unsigned elemIdx) const { if (cFoam_.size() > elemIdx) return cFoam_[elemIdx]; return 0; } Scalar getSaltConcentration(unsigned elemIdx) const { if (cSalt_.size() > elemIdx) return cSalt_[elemIdx]; return 0; } const std::map, double>& getBlockData() { return blockData_; } private: bool isDefunctParallelWell(std::string wname) const { if (simulator_.gridView().comm().size()==1) return false; const auto& parallelWells = simulator_.vanguard().parallelWells(); std::pair value{wname, true}; auto candidate = std::lower_bound(parallelWells.begin(), parallelWells.end(), value); return candidate == parallelWells.end() || *candidate != value; } bool isIORank_() const { const auto& comm = simulator_.gridView().comm(); return comm.rank() == 0; } void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx) { const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0); // Fluid in Place calculations // calculate the pore volume of the current cell. Note that the porosity // returned by the intensive quantities is defined as the ratio of pore // space to total cell volume and includes all pressure dependent (-> // rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG, // PORV, MINPV and friends). Also note that because of this, the porosity // returned by the intensive quantities can be outside of the physical // range [0, 1] in pathetic cases. const double pv = elemCtx.simulator().model().dofTotalVolume(globalDofIdx) * intQuants.porosity().value(); if (pressureTimesHydrocarbonVolume_.size() > 0 && pressureTimesPoreVolume_.size() > 0) { assert(hydrocarbonPoreVolume_.size() == pressureTimesHydrocarbonVolume_.size()); assert(fip_[FipDataType::PoreVolume].size() == pressureTimesPoreVolume_.size()); fip_[FipDataType::PoreVolume][globalDofIdx] = pv; Scalar hydrocarbon = 0.0; if (FluidSystem::phaseIsActive(oilPhaseIdx)) hydrocarbon += Opm::getValue(fs.saturation(oilPhaseIdx)); if (FluidSystem::phaseIsActive(gasPhaseIdx)) hydrocarbon += Opm::getValue(fs.saturation(gasPhaseIdx)); hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon; if (FluidSystem::phaseIsActive(oilPhaseIdx)) { pressureTimesPoreVolume_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)) * pv; pressureTimesHydrocarbonVolume_[globalDofIdx] = pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon; } } if (computeFip_) { Scalar fip[FluidSystem::numPhases]; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { fip[phaseIdx] = 0.0; if (!FluidSystem::phaseIsActive(phaseIdx)) continue; const double b = Opm::getValue(fs.invB(phaseIdx)); const double s = Opm::getValue(fs.saturation(phaseIdx)); fip[phaseIdx] = b * s * pv; } if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlace].size() > 0) fip_[FipDataType::OilInPlace][globalDofIdx] = fip[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlace].size() > 0) fip_[FipDataType::GasInPlace][globalDofIdx] = fip[gasPhaseIdx]; if (FluidSystem::phaseIsActive(waterPhaseIdx) && fip_[FipDataType::WaterInPlace].size() > 0) fip_[FipDataType::WaterInPlace][globalDofIdx] = fip[waterPhaseIdx]; // Store the pure oil and gas Fip if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlaceInLiquidPhase].size() > 0) fip_[FipDataType::OilInPlaceInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlaceInGasPhase].size() > 0) fip_[FipDataType::GasInPlaceInGasPhase][globalDofIdx] = fip[gasPhaseIdx]; if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) { // Gas dissolved in oil and vaporized oil Scalar gasInPlaceLiquid = Opm::getValue(fs.Rs()) * fip[oilPhaseIdx]; Scalar oilInPlaceGas = Opm::getValue(fs.Rv()) * fip[gasPhaseIdx]; if (fip_[FipDataType::GasInPlaceInLiquidPhase].size() > 0) fip_[FipDataType::GasInPlaceInLiquidPhase][globalDofIdx] = gasInPlaceLiquid; if (fip_[FipDataType::OilInPlaceInGasPhase].size() > 0) fip_[FipDataType::OilInPlaceInGasPhase][globalDofIdx] = oilInPlaceGas; // Add dissolved gas and vaporized oil to total Fip if (fip_[FipDataType::OilInPlace].size() > 0) fip_[FipDataType::OilInPlace][globalDofIdx] += oilInPlaceGas; if (fip_[FipDataType::GasInPlace].size() > 0) fip_[FipDataType::GasInPlace][globalDofIdx] += gasInPlaceLiquid; } } } void createLocalRegion_(std::vector& region) { ElementContext elemCtx(simulator_); ElementIterator elemIt = simulator_.gridView().template begin(); const ElementIterator& elemEndIt = simulator_.gridView().template end(); size_t elemIdx = 0; for (; elemIt != elemEndIt; ++elemIt, ++elemIdx) { const Element& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) region[elemIdx] = 0; } } // Sum Fip values over regions. ScalarBuffer regionSum(const ScalarBuffer& property, const std::vector& regionId, size_t maxNumberOfRegions) const { ScalarBuffer totals(maxNumberOfRegions, 0.0); if (property.empty()) return totals; assert(regionId.size() == property.size()); for (size_t j = 0; j < regionId.size(); ++j) { const int regionIdx = regionId[j] - 1; // the cell is not attributed to any region. ignore it! if (regionIdx < 0) continue; assert(regionIdx < static_cast(maxNumberOfRegions)); totals[regionIdx] += property[j]; } const auto& comm = simulator_.gridView().comm(); for (size_t i = 0; i < maxNumberOfRegions; ++i) totals[i] = comm.sum(totals[i]); return totals; } ScalarBuffer pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon, const ScalarBuffer& pvHydrocarbon, const ScalarBuffer& pressurePv, const ScalarBuffer& pv, bool hydrocarbon) const { size_t size = pressurePvHydrocarbon.size(); assert(pvHydrocarbon.size() == size); assert(pressurePv.size() == size); assert(pv.size() == size); ScalarBuffer fraction(size, 0.0); for (size_t i = 0; i < size; ++i) { fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon); } return fraction; } Scalar pressureAverage_(const Scalar& pressurePvHydrocarbon, const Scalar& pvHydrocarbon, const Scalar& pressurePv, const Scalar& pv, bool hydrocarbon) const { if (pvHydrocarbon > 1e-10 && hydrocarbon) return pressurePvHydrocarbon / pvHydrocarbon; return pressurePv / pv; } void fipUnitConvert_(std::array& fip) const { const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], Opm::unit::stb); fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], Opm::unit::stb); fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], Opm::unit::stb); fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], Opm::unit::stb); fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], 1000*Opm::unit::cubic(Opm::unit::feet)); fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], 1000*Opm::unit::cubic(Opm::unit::feet)); fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], 1000*Opm::unit::cubic(Opm::unit::feet)); fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], Opm::unit::stb); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { Scalar scc = Opm::unit::cubic(Opm::prefix::centi * Opm::unit::meter); //standard cubic cm. fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], scc); fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], scc); fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], scc); fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], scc); fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], scc); fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], scc); fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], scc); fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], scc); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { // nothing to do } else { throw std::runtime_error("Unsupported unit type for fluid in place output."); } } void pressureUnitConvert_(Scalar& pav) const { const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { pav = Opm::unit::convert::to(pav, Opm::unit::psia); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { pav = Opm::unit::convert::to(pav, Opm::unit::barsa); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { pav = Opm::unit::convert::to(pav, Opm::unit::atm); } else { throw std::runtime_error("Unsupported unit type for fluid in place output."); } } void outputRegionFluidInPlace_(const std::array& oip, const std::array& cip, const Scalar& pav, const int reg = 0) const { if (forceDisableFipOutput_) return; // don't output FIPNUM report if the region has no porv. if (cip[FipDataType::PoreVolume] == 0) return; const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); std::ostringstream ss; if (reg == 0) { ss << " ===================================================\n" << " : Field Totals :\n"; } else { ss << " ===================================================\n" << " : FIPNUM report region " << std::setw(2) << reg << " :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RM3 :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Porv volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RB :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Pore volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n"; } ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n" << ":Currently in place :" << std::setw(14) << cip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << cip[FipDataType::OilInPlace] << ":" << std::setw(13) << cip[FipDataType::WaterInPlace] << " :" << std::setw(14) << (cip[FipDataType::GasInPlaceInGasPhase]) << std::setw(14) << cip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::GasInPlace] << ":\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:\n" << ":Originally in place :" << std::setw(14) << oip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::OilInPlace] << ":" << std::setw(13) << oip[FipDataType::WaterInPlace] << " :" << std::setw(14) << oip[FipDataType::GasInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::GasInPlace] << ":\n" << ":========================:==========================================:================:==========================================:\n"; Opm::OpmLog::note(ss.str()); } void outputProductionReport_(const ScalarBuffer& wellProd, const StringBuffer& wellProdNames, const bool forceDisableProdOutput) { if(forceDisableProdOutput) return; const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); std::ostringstream ss; if (wellProdNames[WellProdDataType::WellName].empty()) { ss << "======================================================= PRODUCTION REPORT =======================================================\n"//=================== \n" << ": WELL : LOCATION :CTRL: OIL : WATER : GAS : FLUID : WATER : GAS/OIL : WAT/GAS : BHP OR : THP OR :\n"// STEADY-ST PI :\n" << ": NAME : (I,J,K) :MODE: RATE : RATE : RATE : RES.VOL. : CUT : RATIO : RATIO : CON.PR.: BLK.PR.:\n";// OR POTN OF PREF. PH:\n"; if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << ": : : : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : SCM/SCM : SCM/SCM : SCM/SCM : BARSA : BARSA :\n";// :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << ": : : : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : : MSCF/STB : STB/MSCF : PSIA : PSIA :\n";// :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { ss << ": : : : SCC/HR : SCC/HR : SCC/HR : RCC : SCC/SCC : SCC/SCC : SCC/SCC : ATMA : ATMA :\n";// :\n"; } ss << "=================================================================================================================================\n";//=================== \n"; } else { if (wellProd[WellProdDataType::WellLocationi] < 1) { ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(11) << "" << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << "" << ":" << std::setw(8) << "" << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n" } else { ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(5) << wellProd[WellProdDataType::WellLocationi] << "," << std::setw(5) << wellProd[WellProdDataType::WellLocationj] << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << wellProd[WellProdDataType::BHP] << ":" << std::setw(8) << wellProd[WellProdDataType::THP] << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n" } ss << ":"<< std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (5) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (11) << ":" << std::setfill ('-') << std::setw (13) << ":" << std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (9) << ":" << "\n"; } Opm::OpmLog::note(ss.str()); } void outputInjectionReport_(const ScalarBuffer& wellInj, const StringBuffer& wellInjNames, const bool forceDisableInjOutput) { if(forceDisableInjOutput) return; const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); std::ostringstream ss; if (wellInjNames[WellInjDataType::WellName].empty()) { ss << "=================================================== INJECTION REPORT ========================================\n"//===================== \n" << ": WELL : LOCATION : CTRL : CTRL : CTRL : OIL : WATER : GAS : FLUID : BHP OR : THP OR :\n"// STEADY-ST II :\n" << ": NAME : (I,J,K) : MODE : MODE : MODE : RATE : RATE : RATE : RES.VOL. : CON.PR.: BLK.PR.:\n";// OR POTENTIAL :\n"; if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << ": : : OIL : WAT : GAS : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : BARSA : BARSA :\n";// :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << ": : : OIL : WAT : GAS : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : PSIA : PSIA :\n";// :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { ss << ": : : OIL : WAT : GAS : SCC/HR : SCC/HR : SCC/HR : RCC/HR : ATMA : ATMA :\n";// :\n"; } ss << "==============================================================================================================\n";//===================== \n"; } else { if (wellInj[WellInjDataType::WellLocationi] < 1) { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< "" << ":" << std::setw(8)<< "" << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n" } else { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(5) << wellInj[WellInjDataType::WellLocationi] << "," << std::setw(5) << wellInj[WellInjDataType::WellLocationj] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< wellInj[WellInjDataType::BHP] << ":" << std::setw(8)<< wellInj[WellInjDataType::THP] << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n" } ss << ":--------:-----------:------:------:------:------------:----------:-----------:-----------:--------:--------: \n";//--------------------:\n"; } Opm::OpmLog::note(ss.str()); } void outputCumulativeReport_(const ScalarBuffer& wellCum, const StringBuffer& wellCumNames, const bool forceDisableCumOutput) { if(forceDisableCumOutput) return; const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); std::ostringstream ss; if (wellCumNames[WellCumDataType::WellName].empty()) { ss << "=================================================== CUMULATIVE PRODUCTION/INJECTION REPORT =========================================\n" << ": WELL : LOCATION : WELL :CTRL: OIL : WATER : GAS : Prod : OIL : WATER : GAS : INJ :\n" << ": NAME : (I,J,K) : TYPE :MODE: PROD : PROD : PROD : RES.VOL. : INJ : INJ : INJ : RES.VOL. :\n"; if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << ": : : : : MSCM : MSCM : MMSCM : MRCM : MSCM : MSCM : MMSCM : MRCM :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << ": : : : : MSTB : MSTB : MMSCF : MRB : MSTB : MSTB : MMSCF : MRB :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { ss << ": : : : : MSCC : MSCC : MMSCC : MRCC : MSCC : MSCC : MMSCC : MRCC :\n"; } ss << "====================================================================================================================================\n"; } else { if (wellCum[WellCumDataType::WellLocationi] < 1) { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n"; } else { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(5) << wellCum[WellCumDataType::WellLocationi] << "," << std::setw(5) << wellCum[WellCumDataType::WellLocationj] << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n"; } ss << ":--------:-----------:--------:----:------------:----------:-----------:-----------:------------:----------:-----------:-----------: \n"; } Opm::OpmLog::note(ss.str()); } std::string WPEnumToString_(int i) { typedef typename WellProdDataType::WPId WPId; switch(static_cast(i)) { case WellProdDataType::WellName: return "WName"; case WellProdDataType::WellLocationi: return "WLi"; case WellProdDataType::WellLocationj: return "WLj"; case WellProdDataType::CTRLMode: return "CTRL"; case WellProdDataType::OilRate: return "OR"; case WellProdDataType::WaterRate: return "WR"; case WellProdDataType::GasRate: return "GR"; case WellProdDataType::FluidResVol: return "FRV"; case WellProdDataType::WaterCut: return "WC"; case WellProdDataType::GasOilRatio: return "GOR"; case WellProdDataType::WatGasRatio: return "WGR"; case WellProdDataType::BHP: return "BHP"; case WellProdDataType::THP: return "THP"; case WellProdDataType::SteadyStatePI: return "SteadyStatePI"; } return "ERROR"; } std::string WIEnumToString_(int i) { typedef typename WellInjDataType::WIId WIId; switch(static_cast(i)) { case WellInjDataType::WellName: return "WName"; case WellInjDataType::WellLocationi: return "WLi"; case WellInjDataType::WellLocationj: return "WLj"; case WellInjDataType::CTRLModeOil: return "CTRLo"; case WellInjDataType::CTRLModeWat: return "CTRLw"; case WellInjDataType::CTRLModeGas: return "CTRLg"; case WellInjDataType::OilRate: return "OR"; case WellInjDataType::WaterRate: return "WR"; case WellInjDataType::GasRate: return "GR"; case WellInjDataType::FluidResVol: return "FRV"; case WellInjDataType::BHP: return "BHP"; case WellInjDataType::THP: return "THP"; case WellInjDataType::SteadyStateII: return "SteadyStateII"; } return "ERROR"; } std::string WCEnumToString_(int i) { typedef typename WellCumDataType::WCId WCId; switch(static_cast(i)) { case WellCumDataType::WellName: return "WName"; case WellCumDataType::WellLocationi: return "WLi"; case WellCumDataType::WellLocationj: return "WLj"; case WellCumDataType::WellType: return "WType"; case WellCumDataType::WellCTRL: return "WCTRL"; case WellCumDataType::OilProd: return "OP"; case WellCumDataType::WaterProd: return "WP"; case WellCumDataType::GasProd: return "GP"; case WellCumDataType::FluidResVolProd: return "FRVP"; case WellCumDataType::OilInj: return "OI"; case WellCumDataType::WaterInj: return "WI"; case WellCumDataType::GasInj: return "GI"; case WellCumDataType::FluidResVolInj: return "FRVI"; } return "ERROR"; } bool isOutputCreationDirective_(const std::string& keyword) const { return (keyword == "BASIC") || (keyword == "FREQ") || (keyword == "RESTART") // From RPTSCHED || (keyword == "SAVE") || (keyword == "SFREQ"); // Not really supported } const Simulator& simulator_; bool outputFipRestart_; bool computeFip_; bool forceDisableFipOutput_; ScalarBuffer saturation_[numPhases]; ScalarBuffer oilPressure_; ScalarBuffer temperature_; ScalarBuffer gasDissolutionFactor_; ScalarBuffer oilVaporizationFactor_; ScalarBuffer gasFormationVolumeFactor_; ScalarBuffer saturatedOilFormationVolumeFactor_; ScalarBuffer oilSaturationPressure_; ScalarBuffer rs_; ScalarBuffer rv_; ScalarBuffer invB_[numPhases]; ScalarBuffer density_[numPhases]; ScalarBuffer viscosity_[numPhases]; ScalarBuffer relativePermeability_[numPhases]; ScalarBuffer sSol_; ScalarBuffer extboX_; ScalarBuffer extboY_; ScalarBuffer extboZ_; ScalarBuffer mFracOil_; ScalarBuffer mFracGas_; ScalarBuffer mFracCo2_; ScalarBuffer cPolymer_; ScalarBuffer cFoam_; ScalarBuffer cSalt_; ScalarBuffer soMax_; ScalarBuffer pcSwMdcOw_; ScalarBuffer krnSwMdcOw_; ScalarBuffer pcSwMdcGo_; ScalarBuffer krnSwMdcGo_; ScalarBuffer ppcw_; ScalarBuffer bubblePointPressure_; ScalarBuffer dewPointPressure_; ScalarBuffer rockCompPorvMultiplier_; ScalarBuffer rockCompTransMultiplier_; ScalarBuffer swMax_; ScalarBuffer overburdenPressure_; ScalarBuffer minimumOilPressure_; std::vector failedCellsPb_; std::vector failedCellsPd_; std::unordered_map> regions_; std::array fip_; std::optional> regionInitialInplace_; std::optional> fieldInitialInplace_; std::vector RPRNodes_; std::vector RPRPNodes_; std::array, FipDataType::numFipTypes> regionNodes_; ScalarBuffer hydrocarbonPoreVolume_; ScalarBuffer pressureTimesPoreVolume_; ScalarBuffer pressureTimesHydrocarbonVolume_; std::map, double> blockData_; std::map oilConnectionPressures_; std::map waterConnectionSaturations_; std::map gasConnectionSaturations_; std::vector tracerConcentrations_; }; } // namespace Opm #endif