/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_WELLINTERFACE_HEADER_INCLUDED
#define OPM_WELLINTERFACE_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
class WellInterface
{
public:
using WellState = WellStateFullyImplicitBlackoil;
typedef BlackoilModelParametersEbos ModelParameters;
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
static const int numEq = Indices::numEq;
typedef double Scalar;
typedef Dune::FieldVector VectorBlockType;
typedef Dune::FieldMatrix MatrixBlockType;
typedef typename SparseMatrixAdapter::IstlMatrix Mat;
typedef Dune::BlockVector BVector;
typedef DenseAd::Evaluation Eval;
typedef Ewoms::BlackOilPolymerModule PolymerModule;
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
static const bool has_energy = GET_PROP_VALUE(TypeTag, EnableEnergy);
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage >;
/// Constructor
WellInterface(const Well* well, const int time_step, const Wells* wells,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components);
/// Virutal destructor
virtual ~WellInterface() {}
/// Well name.
const std::string& name() const;
/// Index of well in the wells struct and wellState
const int indexOfWell() const;
/// Well cells.
const std::vector& cells() const {return well_cells_; }
/// Well type, INJECTOR or PRODUCER.
WellType wellType() const;
/// Well controls
WellControls* wellControls() const;
void setVFPProperties(const VFPProperties* vfp_properties_arg);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells);
virtual void initPrimaryVariablesEvaluation() const = 0;
virtual ConvergenceReport getWellConvergence(const std::vector& B_avg) const = 0;
virtual void solveEqAndUpdateWellState(WellState& well_state) = 0;
virtual void assembleWellEq(const Simulator& ebosSimulator,
const double dt,
WellState& well_state) = 0;
void updateWellTestState(const WellState& well_state,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState
) const;
void setWellEfficiencyFactor(const double efficiency_factor);
void computeRepRadiusPerfLength(const Grid& grid, const std::vector& cartesian_to_compressed);
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state) const = 0;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const = 0;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const = 0;
// TODO: before we decide to put more information under mutable, this function is not const
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& well_potentials) = 0;
virtual void updateWellStateWithTarget(WellState& well_state) const = 0;
void updateWellControl(WellState& well_state,
wellhelpers::WellSwitchingLogger& logger) const;
virtual void updatePrimaryVariables(const WellState& well_state) const = 0;
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state) = 0; // should be const?
/// \brief Wether the Jacobian will also have well contributions in it.
virtual bool jacobianContainsWellContributions() const
{
return false;
}
// updating the voidage rates in well_state when requested
void calculateReservoirRates(WellState& well_state) const;
// Add well contributions to matrix
virtual void addWellContributions(Mat&) const
{}
virtual void addCellRates(RateVector& rates, int cellIdx) const
{}
template
Eval restrictEval(const EvalWell& in) const
{
Eval out = 0.0;
out.setValue(in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
return out;
}
void closeCompletions(WellTestState& wellTestState);
const Well* wellEcl() const;
// TODO: theoretically, it should be a const function
// Simulator is not const is because that assembleWellEq is non-const Simulator
void wellTesting(Simulator& simulator, const std::vector& B_avg,
const double simulation_time, const int report_step, const bool terminal_output,
const WellTestConfig::Reason testing_reason, const WellState& well_state,
WellTestState& welltest_state);
protected:
// to indicate a invalid completion
static const int INVALIDCOMPLETION = INT_MAX;
const Well* well_ecl_;
const int current_step_;
// the index of well in Wells struct
int index_of_well_;
// simulation parameters
const ModelParameters& param_;
// well type
// INJECTOR or PRODUCER
enum WellType well_type_;
// number of phases
int number_of_phases_;
// component fractions for each well
// typically, it should apply to injection wells
std::vector comp_frac_;
// controls for this well
struct WellControls* well_controls_;
// number of the perforations for this well
int number_of_perforations_;
// record the index of the first perforation
// of states of individual well.
int first_perf_;
// well index for each perforation
std::vector well_index_;
// depth for each perforation
std::vector perf_depth_;
// reference depth for the BHP
double ref_depth_;
double well_efficiency_factor_;
// cell index for each well perforation
std::vector well_cells_;
// saturation table nubmer for each well perforation
std::vector saturation_table_number_;
// representative radius of the perforations, used in shear calculation
std::vector perf_rep_radius_;
// length of the perforations, use in shear calculation
std::vector perf_length_;
// well bore diameter
std::vector bore_diameters_;
const PhaseUsage* phase_usage_;
bool getAllowCrossFlow() const;
const VFPProperties* vfp_properties_;
double gravity_;
// For the conversion between the surface volume rate and resrevoir voidage rate
const RateConverterType& rateConverter_;
// The pvt region of the well. We assume
// We assume a well to not penetrate more than one pvt region.
const int pvtRegionIdx_;
const int num_components_;
const PhaseUsage& phaseUsage() const;
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
int ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const;
double wsolvent() const;
double wpolymer() const;
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
bool wellHasTHPConstraints() const;
// Component fractions for each phase for the well
const std::vector& compFrac() const;
double mostStrictBhpFromBhpLimits() const;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following two
// values should not be used.
// second value indicates the index of the worst-offending completion.
// the last value indicates the extent of the violation for the worst-offending completion, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple;
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
double scalingFactor(const int comp_idx) const;
// whether a well is specified with a non-zero and valid VFP table number
bool isVFPActive() const;
void wellTestingEconomic(Simulator& simulator, const std::vector& B_avg,
const double simulation_time, const int report_step, const bool terminal_output,
const WellState& well_state, WellTestState& welltest_state);
void updateWellTestStateEconomic(const WellState& well_state,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state) const;
void solveWellForTesting(Simulator& ebosSimulator, WellState& well_state, const std::vector& B_avg, bool terminal_output);
void scaleProductivityIndex(const int perfIdx, double& productivity_index) const;
};
}
#include "WellInterface_impl.hpp"
#endif // OPM_WELLINTERFACE_HEADER_INCLUDED