/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#define BOOST_TEST_MODULE TestGpuSparseMatrix
#include
#include
#include
#include
#include
#include
#include
BOOST_AUTO_TEST_CASE(TestConstruction1D)
{
// Here we will test a simple 1D finite difference scheme for
// the Laplace equation:
//
// -\Delta u = f on [0,1]
//
// Using a central difference approximation of \Delta u, this can
// be approximated by
//
// -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i)
//
// giving rise to the matrix
//
// -2 1 0 0 ... 0 0
// 1 -2 1 0 0 ... 0
// ....
// 0 0 0 ...1 -2 1
// 0 0 0 ... 1 -2
const int N = 5;
const int nonZeroes = N * 3 - 2;
using M = Dune::FieldMatrix;
using SpMatrix = Dune::BCRSMatrix;
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
for (auto row = B.createbegin(); row != B.createend(); ++row) {
// Add nonzeros for left neighbour, diagonal and right neighbour
if (row.index() > 0) {
row.insert(row.index() - 1);
}
row.insert(row.index());
if (row.index() < B.N() - 1) {
row.insert(row.index() + 1);
}
}
// This might not be the most elegant way of filling in a Dune sparse matrix, but it works.
for (int i = 0; i < N; ++i) {
B[i][i] = -2;
if (i < N - 1) {
B[i][i + 1] = 1;
}
if (i > 0) {
B[i][i - 1] = 1;
}
}
auto gpuSparseMatrix = Opm::gpuistl::GpuSparseMatrix::fromMatrix(B);
const auto& nonZeroValuesCuda = gpuSparseMatrix.getNonZeroValues();
std::vector buffer(gpuSparseMatrix.nonzeroes(), 0.0);
nonZeroValuesCuda.copyToHost(buffer.data(), buffer.size());
const double* nonZeroElements = static_cast(&((B[0][0][0][0])));
BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), nonZeroElements, nonZeroElements + B.nonzeroes());
BOOST_CHECK_EQUAL(N * 3 - 2, gpuSparseMatrix.nonzeroes());
std::vector rowIndicesFromCUDA(N + 1);
gpuSparseMatrix.getRowIndices().copyToHost(rowIndicesFromCUDA.data(), rowIndicesFromCUDA.size());
BOOST_CHECK_EQUAL(rowIndicesFromCUDA[0], 0);
BOOST_CHECK_EQUAL(rowIndicesFromCUDA[1], 2);
for (int i = 2; i < N; ++i) {
BOOST_CHECK_EQUAL(rowIndicesFromCUDA[i], rowIndicesFromCUDA[i - 1] + 3);
}
std::vector columnIndicesFromCUDA(B.nonzeroes(), 0);
gpuSparseMatrix.getColumnIndices().copyToHost(columnIndicesFromCUDA.data(), columnIndicesFromCUDA.size());
BOOST_CHECK_EQUAL(columnIndicesFromCUDA[0], 0);
BOOST_CHECK_EQUAL(columnIndicesFromCUDA[1], 1);
// TODO: Check rest
}
BOOST_AUTO_TEST_CASE(RandomSparsityMatrix)
{
std::srand(0);
double nonzeroPercent = 0.2;
std::mt19937 generator;
std::uniform_real_distribution distribution(0.0, 1.0);
constexpr size_t dim = 3;
const int N = 300;
using M = Dune::FieldMatrix;
using SpMatrix = Dune::BCRSMatrix;
using Vector = Dune::BlockVector>;
std::vector> nonzerocols(N);
int nonZeroes = 0;
for (auto row = 0; row < N; ++row) {
for (size_t col = 0; col < N; ++col) {
if (distribution(generator) < nonzeroPercent) {
nonzerocols.at(row).push_back(col);
nonZeroes++;
}
}
}
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
for (auto row = B.createbegin(); row != B.createend(); ++row) {
for (size_t j = 0; j < nonzerocols[row.index()].size(); ++j) {
row.insert(nonzerocols[row.index()][j]);
}
}
// This might not be the most elegant way of filling in a Dune sparse matrix, but it works.
for (int i = 0; i < N; ++i) {
for (size_t j = 0; j < nonzerocols[i].size(); ++j) {
for (size_t c1 = 0; c1 < dim; ++c1) {
for (size_t c2 = 0; c2 < dim; ++c2) {
B[i][nonzerocols[i][j]][c1][c2] = distribution(generator);
}
}
}
}
auto gpuSparseMatrix = Opm::gpuistl::GpuSparseMatrix::fromMatrix(B);
// check each column
for (size_t component = 0; component < N; ++component) {
std::vector inputDataX(N * dim, 0.0);
inputDataX[component] = 1.0;
std::vector inputDataY(N * dim, .25);
auto inputVectorX = Opm::gpuistl::GpuVector(inputDataX.data(), inputDataX.size());
auto inputVectorY = Opm::gpuistl::GpuVector(inputDataY.data(), inputDataY.size());
Vector xHost(N), yHost(N);
yHost = inputDataY[0];
inputVectorX.copyToHost(xHost);
const double alpha = 1.42;
gpuSparseMatrix.usmv(alpha, inputVectorX, inputVectorY);
inputVectorY.copyToHost(inputDataY);
B.usmv(alpha, xHost, yHost);
for (size_t i = 0; i < N; ++i) {
for (size_t c = 0; c < dim; ++c) {
BOOST_CHECK_CLOSE(inputDataY[i * dim + c], yHost[i][c], 1e-7);
}
}
inputVectorX.copyToHost(xHost);
gpuSparseMatrix.mv(inputVectorX, inputVectorY);
inputVectorY.copyToHost(inputDataY);
B.mv(xHost, yHost);
for (size_t i = 0; i < N; ++i) {
for (size_t c = 0; c < dim; ++c) {
BOOST_CHECK_CLOSE(inputDataY[i * dim + c], yHost[i][c], 1e-7);
}
}
}
}