// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2008-2009 by Melanie Darcis *
* Copyright (C) 2008-2009 by Klaus Mosthaf *
* Copyright (C) 2009-2012 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
*****************************************************************************/
/*!
* \file
*
* \brief Tutorial problem for a fully coupled twophase box model.
*/
#ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/
#define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/
// The numerical model
#include
// The components that are used
#include
#include
// The material laws
#include /*@\label{tutorial-coupled:rawLawInclude}@*/
#include
#include
// The DUNE grid used
#include
#include
// Dune::FieldVector and Dune::FieldMatrix
#include
#include
namespace Dumux {
// forward declaration of the problem class
template
class TutorialProblemCoupled;
namespace Properties {
// Create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxImmiscibleTwoPhase)); /*@\label{tutorial-coupled:create-type-tag}@*/
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
{ typedef Dumux::TutorialProblemCoupled type;};
// Set grid and the grid creator to be used
SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid*dim=*/2>); /*@\label{tutorial-coupled:set-grid}@*/
SET_TYPE_PROP(TutorialProblemCoupled, GridCreator, Dumux::CubeGridCreator); /*@\label{tutorial-coupled:set-gridcreator}@*/
// Set the wetting phase
SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/
{
private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:wettingPhase}@*/
};
// Set the non-wetting phase
SET_PROP(TutorialProblemCoupled, NonwettingPhase)
{
private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/
}; /*@\label{tutorial-coupled:2p-system-end}@*/
// Set the material law
SET_PROP(TutorialProblemCoupled, MaterialLaw)
{
private:
// material law typedefs
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
// select material law to be used
typedef RegularizedBrooksCorey RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
// adapter for absolute law
typedef EffToAbsLaw TwoPMaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
public:
typedef TwoPAdapter type;
};
// Disable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
// define the properties required by the cube grid creator
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeX, 300.0);
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeY, 60.0);
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeZ, 0.0);
SET_INT_PROP(TutorialProblemCoupled, CellsX, 100);
SET_INT_PROP(TutorialProblemCoupled, CellsY, 1);
SET_INT_PROP(TutorialProblemCoupled, CellsZ, 0);
}
/*!
* \ingroup TwoPBoxModel
*
* \brief Tutorial problem for a fully coupled twophase box model.
*/
template
class TutorialProblemCoupled
: public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial-coupled:def-problem}@*/
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
// Grid dimension
enum { dimWorld = GridView::dimensionworld };
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector GlobalPosition;
typedef Dune::FieldMatrix DimMatrix;
// Dumux specific types
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
// get material law from property system
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
// determine type of the parameter objects depening on selected material law
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/
// phase indices
enum { numPhases = FluidSystem::numPhases };
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
enum { nPhaseIdx = FluidSystem::nPhaseIdx };
// indices of the conservation equations
enum { contiWEqIdx = Indices::conti0EqIdx + wPhaseIdx };
enum { contiNEqIdx = Indices::conti0EqIdx + nPhaseIdx };
public:
TutorialProblemCoupled(TimeManager &timeManager)
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
, eps_(3e-6)
{
// set main diagonal entries of the permeability tensor to a value
// setting to a single value means: isotropic, homogeneous
K_ = this->toDimMatrix_(1e-7);
//set residual saturations
materialParams_.setSwr(0.0); /*@\label{tutorial-coupled:setLawParams}@*/
materialParams_.setSnr(0.0);
//parameters of Brooks & Corey Law
materialParams_.setPe(500.0);
materialParams_.setLambda(2);
}
//! Specifies the problem name. This is used as a prefix for files
//! generated by the simulation.
const char *name() const
{ return "tutorial_coupled"; }
//! Returns true if a restart file should be written.
bool shouldWriteRestartFile() const /*@\label{tutorial-coupled:restart}@*/
{ return false; }
//! Returns true if the current solution should be written to disk
//! as a VTK file
bool shouldWriteOutput() const /*@\label{tutorial-coupled:output}@*/
{
return (this->timeManager().timeStepIndex() % 5 == 0) ||
this->timeManager().willBeFinished() ;
}
//! Returns the temperature within a finite volume. We use constant
//! 10 degrees Celsius.
template
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return 283.15; }
/*! Intrinsic permeability tensor K \f$[m^2]\f$ depending
* on the position in the domain
*
* \param context The execution context
* \param scvIdx The local index of the degree of freedom
*
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
template
const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial-coupled:permeability}@*/
int spaceIdx, int timeIdx) const
{ return K_; }
/*! Define the porosity \f$[-]\f$ of the porous medium depending
* on the position in the domain
*
* \param context The execution context
* \param scvIdx The local index of the degree of freedom
*
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
template
Scalar porosity(const Context &context, /*@\label{tutorial-coupled:porosity}@*/
int spaceIdx, int timeIdx) const
{ return 0.2; }
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
* depending on the position in the domain
*
* \param context The execution context
* \param scvIdx The local index of the degree of freedom
*
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
template
const MaterialLawParams& materialLawParams(const Context &context, /*@\label{tutorial-coupled:matLawParams}@*/
int spaceIdx, int timeIdx) const
{ return materialParams_; }
//! Evaluate the boundary conditions.
template
void boundary(BoundaryRateVector &values, const Context &context, int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (pos[0] < eps_) {
// Free-flow conditions on left boundary
const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 1.0;
ImmiscibleFluidState fs;
fs.setSaturation(wPhaseIdx, Sw);
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, materialParams, fs);
fs.setPressure(wPhaseIdx, 200e3);
fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (pos[0] > this->bboxMax()[0] - eps_) {
// forced outflow at the right boundary
RateVector massRate(0.0);
massRate[contiWEqIdx] = 0.0; // [kg / (s m^2)]
massRate[contiNEqIdx] = 3e-2; // [kg / (s m^2)]
values.setMassRate(massRate);
}
else // no flow at the remaining boundaries
values.setNoFlow();
}
//! Evaluates the source term for all phases within a given
//! sub-control-volume. In this case, the 'values' parameter
//! stores the rate mass generated or annihilated per volume unit
//! in [kg / (m^3 * s)]. Positive values mean that mass is created.
template
void source(RateVector &values, const Context &context, int spaceIdx, int timeIdx) const
{
values[contiWEqIdx] = 0.0;
values[contiNEqIdx]= 0.0;
}
// Evaluates the initial value for a control volume. For this
// method, the 'values' parameter stores primary variables.
template
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
{
ImmiscibleFluidState fs;
// the domain is initially fully saturated by LNAPL
Scalar Sw = 0.0;
fs.setSaturation(wPhaseIdx, Sw);
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
// the temperature is given by the temperature() method
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
// set pressure of the wetting phase to 200 kPa = 2 bar
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx), fs);
fs.setPressure(wPhaseIdx, 200e3);
fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]);
values.assignNaive(fs);
}
private:
DimMatrix K_;
// Object that holds the values/parameters of the selected material law.
MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/
// small epsilon value
Scalar eps_;
};
}
#endif