// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis * * Copyright (C) 2008-2009 by Klaus Mosthaf * * Copyright (C) 2009-2012 by Andreas Lauser * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * * \brief Tutorial problem for a fully coupled twophase box model. */ #ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/ #define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/ // The numerical model #include // The components that are used #include #include // The material laws #include /*@\label{tutorial-coupled:rawLawInclude}@*/ #include #include // The DUNE grid used #include #include // Dune::FieldVector and Dune::FieldMatrix #include #include namespace Dumux { // forward declaration of the problem class template class TutorialProblemCoupled; namespace Properties { // Create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxImmiscibleTwoPhase)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dumux::TutorialProblemCoupled type;}; // Set grid and the grid creator to be used SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid); /*@\label{tutorial-coupled:set-grid}@*/ SET_TYPE_PROP(TutorialProblemCoupled, GridCreator, Dumux::CubeGridCreator); /*@\label{tutorial-coupled:set-gridcreator}@*/ // Set the wetting phase SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/ { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:wettingPhase}@*/ }; // Set the non-wetting phase SET_PROP(TutorialProblemCoupled, NonwettingPhase) { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/ }; /*@\label{tutorial-coupled:2p-system-end}@*/ // Set the material law SET_PROP(TutorialProblemCoupled, MaterialLaw) { private: // material law typedefs typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; // select material law to be used typedef RegularizedBrooksCorey RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/ // adapter for absolute law typedef EffToAbsLaw TwoPMaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/ typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; enum { wPhaseIdx = FluidSystem::wPhaseIdx }; public: typedef TwoPAdapter type; }; // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ // define the properties required by the cube grid creator SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeX, 300.0); SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeY, 60.0); SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeZ, 0.0); SET_INT_PROP(TutorialProblemCoupled, CellsX, 100); SET_INT_PROP(TutorialProblemCoupled, CellsY, 1); SET_INT_PROP(TutorialProblemCoupled, CellsZ, 0); } /*! * \ingroup TwoPBoxModel * * \brief Tutorial problem for a fully coupled twophase box model. */ template class TutorialProblemCoupled : public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial-coupled:def-problem}@*/ { typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; // Grid dimension enum { dimWorld = GridView::dimensionworld }; typedef typename GridView::ctype CoordScalar; typedef Dune::FieldVector GlobalPosition; typedef Dune::FieldMatrix DimMatrix; // Dumux specific types typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; // get material law from property system typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; // determine type of the parameter objects depening on selected material law typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/ // phase indices enum { numPhases = FluidSystem::numPhases }; enum { wPhaseIdx = FluidSystem::wPhaseIdx }; enum { nPhaseIdx = FluidSystem::nPhaseIdx }; // indices of the conservation equations enum { contiWEqIdx = Indices::conti0EqIdx + wPhaseIdx }; enum { contiNEqIdx = Indices::conti0EqIdx + nPhaseIdx }; public: TutorialProblemCoupled(TimeManager &timeManager) : ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView()) , eps_(3e-6) { // set main diagonal entries of the permeability tensor to a value // setting to a single value means: isotropic, homogeneous K_ = this->toDimMatrix_(1e-7); //set residual saturations materialParams_.setSwr(0.0); /*@\label{tutorial-coupled:setLawParams}@*/ materialParams_.setSnr(0.0); //parameters of Brooks & Corey Law materialParams_.setPe(500.0); materialParams_.setLambda(2); } //! Specifies the problem name. This is used as a prefix for files //! generated by the simulation. const char *name() const { return "tutorial_coupled"; } //! Returns true if a restart file should be written. bool shouldWriteRestartFile() const /*@\label{tutorial-coupled:restart}@*/ { return false; } //! Returns true if the current solution should be written to disk //! as a VTK file bool shouldWriteOutput() const /*@\label{tutorial-coupled:output}@*/ { return (this->timeManager().timeStepIndex() % 5 == 0) || this->timeManager().willBeFinished() ; } //! Returns the temperature within a finite volume. We use constant //! 10 degrees Celsius. template Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const { return 283.15; } /*! Intrinsic permeability tensor K \f$[m^2]\f$ depending * on the position in the domain * * \param context The execution context * \param scvIdx The local index of the degree of freedom * * Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ template const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial-coupled:permeability}@*/ int spaceIdx, int timeIdx) const { return K_; } /*! Define the porosity \f$[-]\f$ of the porous medium depending * on the position in the domain * * \param context The execution context * \param scvIdx The local index of the degree of freedom * * Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ template Scalar porosity(const Context &context, /*@\label{tutorial-coupled:porosity}@*/ int spaceIdx, int timeIdx) const { return 0.2; } /*! Return the parameter object for the material law (i.e. Brooks-Corey) * depending on the position in the domain * * \param context The execution context * \param scvIdx The local index of the degree of freedom * * Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ template const MaterialLawParams& materialLawParams(const Context &context, /*@\label{tutorial-coupled:matLawParams}@*/ int spaceIdx, int timeIdx) const { return materialParams_; } //! Evaluate the boundary conditions. template void boundary(BoundaryRateVector &values, const Context &context, int spaceIdx, int timeIdx) const { const GlobalPosition &pos = context.pos(spaceIdx, timeIdx); if (pos[0] < eps_) { // Free-flow conditions on left boundary const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx); Scalar Sw = 1.0; ImmiscibleFluidState fs; fs.setSaturation(wPhaseIdx, Sw); fs.setSaturation(nPhaseIdx, 1.0 - Sw); fs.setTemperature(temperature(context, spaceIdx, timeIdx)); Scalar pC[numPhases]; MaterialLaw::capillaryPressures(pC, materialParams, fs); fs.setPressure(wPhaseIdx, 200e3); fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]); values.setFreeFlow(context, spaceIdx, timeIdx, fs); } else if (pos[0] > this->bboxMax()[0] - eps_) { // forced outflow at the right boundary RateVector massRate(0.0); massRate[contiWEqIdx] = 0.0; // [kg / (s m^2)] massRate[contiNEqIdx] = 3e-2; // [kg / (s m^2)] values.setMassRate(massRate); } else // no flow at the remaining boundaries values.setNoFlow(); } //! Evaluates the source term for all phases within a given //! sub-control-volume. In this case, the 'values' parameter //! stores the rate mass generated or annihilated per volume unit //! in [kg / (m^3 * s)]. Positive values mean that mass is created. template void source(RateVector &values, const Context &context, int spaceIdx, int timeIdx) const { values[contiWEqIdx] = 0.0; values[contiNEqIdx]= 0.0; } // Evaluates the initial value for a control volume. For this // method, the 'values' parameter stores primary variables. template void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const { ImmiscibleFluidState fs; // the domain is initially fully saturated by LNAPL Scalar Sw = 0.0; fs.setSaturation(wPhaseIdx, Sw); fs.setSaturation(nPhaseIdx, 1.0 - Sw); // the temperature is given by the temperature() method fs.setTemperature(temperature(context, spaceIdx, timeIdx)); // set pressure of the wetting phase to 200 kPa = 2 bar Scalar pC[numPhases]; MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx), fs); fs.setPressure(wPhaseIdx, 200e3); fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]); values.assignNaive(fs); } private: DimMatrix K_; // Object that holds the values/parameters of the selected material law. MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/ // small epsilon value Scalar eps_; }; } #endif