/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services. Copyright 2015 NTNU. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { // Making these typedef to make the code more readable. typedef BlackoilPropsAdFromDeck::ADB ADB; typedef BlackoilPropsAdFromDeck::V V; typedef Eigen::Array Block; /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, const UnstructuredGrid& grid, const bool init_rock) { init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims, init_rock); } #ifdef HAVE_OPM_GRID /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const Dune::CpGrid& grid, const bool init_rock ) { auto materialLawManager = std::make_shared(); unsigned number_of_cells = grid.size(0); std::vector compressedToCartesianIdx(number_of_cells); for (unsigned cellIdx = 0; cellIdx < number_of_cells; ++cellIdx) { compressedToCartesianIdx[cellIdx] = grid.globalCell()[cellIdx]; } materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx); init(deck, eclState, materialLawManager, grid.numCells(), static_cast(&grid.globalCell()[0]), static_cast(&grid.logicalCartesianSize()[0]), init_rock); } #endif /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const UnstructuredGrid& grid, const bool init_rock) { auto materialLawManager = std::make_shared(); std::vector compressedToCartesianIdx(grid.number_of_cells); for (int cellIdx = 0; cellIdx < grid.number_of_cells; ++cellIdx) { if (grid.global_cell) { compressedToCartesianIdx[cellIdx] = grid.global_cell[cellIdx]; } else { compressedToCartesianIdx[cellIdx] = cellIdx; } } materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx); init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims, init_rock); } #ifdef HAVE_OPM_GRID /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, const Dune::CpGrid& grid, const bool init_rock ) { init(deck, eclState, materialLawManager, grid.numCells(), static_cast(&grid.globalCell()[0]), static_cast(&grid.logicalCartesianSize()[0]), init_rock); } #endif /// Constructor for properties on a subgrid BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck& props, std::shared_ptr materialLawManager, const int number_of_cells) : rock_(number_of_cells), satprops_(new SaturationPropsFromDeck()) { const int original_size = props.cellPvtRegionIdx_.size(); if (number_of_cells > original_size) { OPM_THROW(std::runtime_error, "The number of cells is larger than the one of the original grid!"); } if (number_of_cells < 0) { OPM_THROW(std::runtime_error, "The number of cells is has to be larger than 0."); } materialLawManager_ = materialLawManager; // Copy properties that do not depend on the postion within the grid. phase_usage_ = props.phase_usage_; vap1_ = props.vap1_; vap2_ = props.vap2_; vap_satmax_guard_ = props.vap_satmax_guard_; // For data that is dependant on the subgrid we simply allocate space // and initialize with obviously bogus numbers. cellPvtRegionIdx_.resize(number_of_cells, std::numeric_limits::min()); satprops_->init(phase_usage_, materialLawManager_); } /// Initializes the properties. void BlackoilPropsAdFromDeck::init(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, const bool init_rock) { materialLawManager_ = materialLawManager; // retrieve the cell specific PVT table index from the deck // and using the grid... extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell); if (init_rock){ rock_.init(eclState, number_of_cells, global_cell, cart_dims); } phase_usage_ = phaseUsageFromDeck(deck); if (!FluidSystem::isInitialized()) { // make sure that we don't initialize the fluid system twice FluidSystem::initFromDeck(deck, eclState); } // Oil vaporization controls (kw VAPPARS) vap1_ = vap2_ = 0.0; if (deck.hasKeyword("VAPPARS") && deck.hasKeyword("VAPOIL") && deck.hasKeyword("DISGAS")) { vap1_ = deck.getKeyword("VAPPARS").getRecord(0).getItem(0).get< double >(0); vap2_ = deck.getKeyword("VAPPARS").getRecord(0).getItem(1).get< double >(0); } else if (deck.hasKeyword("VAPPARS")) { OPM_THROW(std::runtime_error, "Input has VAPPARS, but missing VAPOIL and/or DISGAS\n"); } satOilMax_.resize(number_of_cells, 0.0); SaturationPropsFromDeck* ptr = new SaturationPropsFromDeck(); satprops_.reset(ptr); ptr->init(deck, materialLawManager_); if (phase_usage_.num_phases != satprops_->numPhases()) { OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck() - " "Inconsistent number of phases in pvt data (" << phase_usage_.num_phases << ") and saturation-dependent function data (" << satprops_->numPhases() << ")."); } vap_satmax_guard_ = 0.01; } //////////////////////////// // Rock interface // //////////////////////////// /// \return D, the number of spatial dimensions. int BlackoilPropsAdFromDeck::numDimensions() const { return rock_.numDimensions(); } /// \return N, the number of cells. int BlackoilPropsAdFromDeck::numCells() const { return rock_.numCells(); } /// \return Array of N porosity values. const double* BlackoilPropsAdFromDeck::porosity() const { return rock_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* BlackoilPropsAdFromDeck::permeability() const { return rock_.permeability(); } //////////////////////////// // Fluid interface // //////////////////////////// /// \return Number of active phases (also the number of components). int BlackoilPropsAdFromDeck::numPhases() const { return phase_usage_.num_phases; } /// \return Object describing the active phases. PhaseUsage BlackoilPropsAdFromDeck::phaseUsage() const { return phase_usage_; } // ------ Density ------ /// Densities of stock components at surface conditions. /// \param[in] phaseIdx /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n density values for phase given by phaseIdx. V BlackoilPropsAdFromDeck::surfaceDensity(const int phaseIdx, const Cells& cells) const { assert( !(phaseIdx > numPhases())); const int n = cells.size(); V rhos = V::Zero(n); for (int cellIdx = 0; cellIdx < n; ++cellIdx) { int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; rhos[cellIdx] = FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx); } return rhos; } // ------ Viscosity ------ /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw, const ADB& T, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not active."); } const int n = cells.size(); assert(pw.size() == n); V mu(n); V dmudp(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; pEval.setDerivative(0, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(pw.value()[i]); TEval.setValue(T.value()[i]); const Eval& muEval = FluidSystem::waterPvt().viscosity(pvtRegionIdx, TEval, pEval); mu[i] = muEval.value(); dmudp[i] = muEval.derivative(0); } if (pw.derivative().empty()) { return ADB::constant(std::move(mu)); } else { ADB::M dmudp_diag(dmudp.matrix().asDiagonal()); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dmudp_diag, pw.derivative()[block], jacs[block]); } return ADB::function(std::move(mu), std::move(jacs)); } } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not active."); } const int n = cells.size(); assert(po.size() == n); V mu(n); V dmudp(n); V dmudr(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RsEval = 0.0; pEval.setDerivative(0, 1.0); RsEval.setDerivative(1, 1.0); Eval muEval; for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(po.value()[i]); TEval.setValue(T.value()[i]); if (cond[i].hasFreeGas()) { muEval = FluidSystem::oilPvt().saturatedViscosity(pvtRegionIdx, TEval, pEval); } else { if (phase_usage_.phase_used[Gas]) { RsEval.setValue(rs.value()[i]); } muEval = FluidSystem::oilPvt().viscosity(pvtRegionIdx, TEval, pEval, RsEval); } mu[i] = muEval.value(); dmudp[i] = muEval.derivative(0); dmudr[i] = muEval.derivative(1); } ADB::M dmudp_diag(dmudp.matrix().asDiagonal()); ADB::M dmudr_diag(dmudr.matrix().asDiagonal()); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dmudp_diag, po.derivative()[block], jacs[block]); if (phase_usage_.phase_used[Gas]) { ADB::M temp; fastSparseProduct(dmudr_diag, rs.derivative()[block], temp); jacs[block] += temp; } } return ADB::function(std::move(mu), std::move(jacs)); } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratio /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not active."); } const int n = cells.size(); assert(pg.value().size() == n); V mu(n); V dmudp(n); V dmudr(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RvEval = 0.0; Eval muEval; pEval.setDerivative(0, 1.0); RvEval.setDerivative(1, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(pg.value()[i]); TEval.setValue(T.value()[i]); if (cond[i].hasFreeOil()) { muEval = FluidSystem::gasPvt().saturatedViscosity(pvtRegionIdx, TEval, pEval); } else { RvEval.setValue(rv.value()[i]); muEval = FluidSystem::gasPvt().viscosity(pvtRegionIdx, TEval, pEval, RvEval); } mu[i] = muEval.value(); dmudp[i] = muEval.derivative(0); dmudr[i] = muEval.derivative(1); } ADB::M dmudp_diag(dmudp.matrix().asDiagonal()); ADB::M dmudr_diag(dmudr.matrix().asDiagonal()); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dmudp_diag, pg.derivative()[block], jacs[block]); ADB::M temp; fastSparseProduct(dmudr_diag, rv.derivative()[block], temp); jacs[block] += temp; } return ADB::function(std::move(mu), std::move(jacs)); } // ------ Formation volume factor (b) ------ /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw, const ADB& T, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not active."); } const int n = cells.size(); assert(pw.size() == n); V b(n); V dbdp(n); V dbdr(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; pEval.setDerivative(0, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(pw.value()[i]); TEval.setValue(T.value()[i]); const Eval& bEval = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); b[i] = bEval.value(); dbdp[i] = bEval.derivative(0); } ADB::M dbdp_diag(dbdp.matrix().asDiagonal()); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dbdp_diag, pw.derivative()[block], jacs[block]); } return ADB::function(std::move(b), std::move(jacs)); } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not active."); } const int n = cells.size(); assert(po.size() == n); V b(n); V dbdp(n); V dbdr(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RsEval = 0.0; Eval bEval; pEval.setDerivative(0, 1.0); RsEval.setDerivative(1, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(po.value()[i]); TEval.setValue(T.value()[i]); //RS/RV only makes sense when gas phase is active if (cond[i].hasFreeGas()) { bEval = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); } else { if (rs.size() == 0) { RsEval.setValue(0.0); } else { RsEval.setValue(rs.value()[i]); } bEval = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval); } b[i] = bEval.value(); dbdp[i] = bEval.derivative(0); dbdr[i] = bEval.derivative(1); } ADB::M dbdp_diag(dbdp.matrix().asDiagonal()); ADB::M dbdr_diag(dbdr.matrix().asDiagonal()); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dbdp_diag, po.derivative()[block], jacs[block]); if (phase_usage_.phase_used[Gas]) { ADB::M temp; fastSparseProduct(dbdr_diag, rs.derivative()[block], temp); jacs[block] += temp; } } return ADB::function(std::move(b), std::move(jacs)); } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratio /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not active."); } const int n = cells.size(); assert(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RvEval = 0.0; Eval bEval; pEval.setDerivative(0, 1.0); RvEval.setDerivative(1, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(pg.value()[i]); TEval.setValue(T.value()[i]); if (cond[i].hasFreeOil()) { bEval = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); } else { RvEval.setValue(rv.value()[i]); bEval = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval); } b[i] = bEval.value(); dbdp[i] = bEval.derivative(0); dbdr[i] = bEval.derivative(1); } ADB::M dbdp_diag(dbdp.matrix().asDiagonal()); ADB::M dbdr_diag(dbdr.matrix().asDiagonal()); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dbdp_diag, pg.derivative()[block], jacs[block]); ADB::M temp; fastSparseProduct(dbdr_diag, rv.derivative()[block], temp); jacs[block] += temp; } return ADB::function(std::move(b), std::move(jacs)); } // ------ Rs bubble point curve ------ /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call rsSat(): oil phase not active."); } const int n = cells.size(); assert(po.size() == n); V rbub(n); V drbubdp(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 293.15; // temperature is not supported by this API! pEval.setDerivative(0, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(po.value()[i]); const Eval& RsEval = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval); rbub[i] = RsEval.value(); drbubdp[i] = RsEval.derivative(0); } ADB::M drbubdp_diag(drbubdp.matrix().asDiagonal()); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(drbubdp_diag, po.derivative()[block], jacs[block]); } return ADB::function(std::move(rbub), std::move(jacs)); } /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po, const ADB& so, const Cells& cells) const { ADB rs = rsSat(po, cells); applyVap(rs, so, cells, vap2_); return rs; } // ------ Rv condensation curve ------ /// Condensation curve for Rv as function of oil pressure. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n condensation point values for Rv. ADB BlackoilPropsAdFromDeck::rvSat(const ADB& pg, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call rvSat(): gas phase not active."); } const int n = cells.size(); assert(pg.size() == n); V rv(n); V drvdp(n); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 293.15; // temperature is not supported by this API! pEval.setDerivative(0, 1.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; pEval.setValue(pg.value()[i]); const Eval& RvEval = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval); rv[i] = RvEval.value(); drvdp[i] = RvEval.derivative(0); } ADB::M drvdp_diag(drvdp.matrix().asDiagonal()); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(drvdp_diag, pg.derivative()[block], jacs[block]); } return ADB::function(std::move(rv), std::move(jacs)); } /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n condensation point values for Rv. ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po, const ADB& so, const Cells& cells) const { ADB rv = rvSat(po, cells); applyVap(rv, so, cells, vap1_); return rv; } // ------ Relative permeability ------ /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAdFromDeck::relperm(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const { const int n = cells.size(); const int np = numPhases(); Block s_all(n, np); if (phase_usage_.phase_used[Water]) { assert(sw.value().size() == n); s_all.col(phase_usage_.phase_pos[Water]) = sw.value(); } if (phase_usage_.phase_used[Oil]) { assert(so.value().size() == n); s_all.col(phase_usage_.phase_pos[Oil]) = so.value(); } else { OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active."); } if (phase_usage_.phase_used[Gas]) { assert(sg.value().size() == n); s_all.col(phase_usage_.phase_pos[Gas]) = sg.value(); } Block kr(n, np); Block dkr(n, np*np); satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data()); const int num_blocks = so.numBlocks(); std::vector relperms; relperms.reserve(3); typedef const ADB* ADBPtr; ADBPtr s[3] = { &sw, &so, &sg }; for (int phase1 = 0; phase1 < 3; ++phase1) { if (phase_usage_.phase_used[phase1]) { const int phase1_pos = phase_usage_.phase_pos[phase1]; std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols()); } for (int phase2 = 0; phase2 < 3; ++phase2) { if (!phase_usage_.phase_used[phase2]) { continue; } const int phase2_pos = phase_usage_.phase_pos[phase2]; // Assemble dkr1/ds2. const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm() ADB::M dkr1_ds2_diag(dkr.col(column).matrix().asDiagonal()); for (int block = 0; block < num_blocks; ++block) { ADB::M temp; fastSparseProduct(dkr1_ds2_diag, s[phase2]->derivative()[block], temp); jacs[block] += temp; } } ADB::V val = kr.col(phase1_pos); relperms.emplace_back(ADB::function(std::move(val), std::move(jacs))); } else { relperms.emplace_back(ADB::null()); } } return relperms; } std::vector BlackoilPropsAdFromDeck::capPress(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const { const int nCells = cells.size(); const int nActivePhases = numPhases(); const int nBlocks = so.numBlocks(); Block activeSat(nCells, nActivePhases); if (phase_usage_.phase_used[Water]) { assert(sw.value().size() == nCells); activeSat.col(phase_usage_.phase_pos[Water]) = sw.value(); } if (phase_usage_.phase_used[Oil]) { assert(so.value().size() == nCells); activeSat.col(phase_usage_.phase_pos[Oil]) = so.value(); } else { OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active."); } if (phase_usage_.phase_used[Gas]) { assert(sg.value().size() == nCells); activeSat.col(phase_usage_.phase_pos[Gas]) = sg.value(); } Block pc(nCells, nActivePhases); Block dpc(nCells, nActivePhases*nActivePhases); satprops_->capPress(nCells, activeSat.data(), cells.data(), pc.data(), dpc.data()); std::vector adbCapPressures; adbCapPressures.reserve(3); const ADB* s[3] = { &sw, &so, &sg }; for (int phase1 = 0; phase1 < 3; ++phase1) { if (phase_usage_.phase_used[phase1]) { const int phase1_pos = phase_usage_.phase_pos[phase1]; std::vector jacs(nBlocks); for (int block = 0; block < nBlocks; ++block) { jacs[block] = ADB::M(nCells, s[phase1]->derivative()[block].cols()); } for (int phase2 = 0; phase2 < 3; ++phase2) { if (!phase_usage_.phase_used[phase2]) continue; const int phase2_pos = phase_usage_.phase_pos[phase2]; // Assemble dpc1/ds2. const int column = phase1_pos + nActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm() ADB::M dpc1_ds2_diag(dpc.col(column).matrix().asDiagonal()); for (int block = 0; block < nBlocks; ++block) { ADB::M temp; fastSparseProduct(dpc1_ds2_diag, s[phase2]->derivative()[block], temp); jacs[block] += temp; } } ADB::V val = pc.col(phase1_pos); adbCapPressures.emplace_back(ADB::function(std::move(val), std::move(jacs))); } else { adbCapPressures.emplace_back(ADB::null()); } } return adbCapPressures; } /// Saturation update for hysteresis behavior. /// \param[in] cells Array of n cell indices to be associated with the saturation values. void BlackoilPropsAdFromDeck::updateSatHyst(const std::vector& saturation, const std::vector& cells) { const int n = cells.size(); satprops_->updateSatHyst(n, cells.data(), saturation.data()); } /// Set gas-oil hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void BlackoilPropsAdFromDeck::setGasOilHystParams(const std::vector& pcswmdc, const std::vector& krnswdc, const std::vector& cells) { const size_t n = cells.size(); assert(pcswmdc.size() == n); assert(krnswdc.size() == n); satprops_->setGasOilHystParams(n, cells.data(), pcswmdc.data(), krnswdc.data()); } /// Get gas-oil hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void BlackoilPropsAdFromDeck::getGasOilHystParams(std::vector& pcswmdc, std::vector& krnswdc, const std::vector& cells) const { const size_t n = cells.size(); pcswmdc.resize(n); krnswdc.resize(n); satprops_->getGasOilHystParams(n, cells.data(), pcswmdc.data(), krnswdc.data()); } /// Set oil-water hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void BlackoilPropsAdFromDeck::setOilWaterHystParams(const std::vector& pcswmdc, const std::vector& krnswdc, const std::vector& cells) { const size_t n = cells.size(); assert(pcswmdc.size() == n); assert(krnswdc.size() == n); satprops_->setOilWaterHystParams(n, cells.data(), pcswmdc.data(), krnswdc.data()); } /// Get oil-water hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void BlackoilPropsAdFromDeck::getOilWaterHystParams(std::vector& pcswmdc, std::vector& krnswdc, const std::vector& cells) const { const size_t n = cells.size(); pcswmdc.resize(n); krnswdc.resize(n); satprops_->getOilWaterHystParams(n, cells.data(), pcswmdc.data(), krnswdc.data()); } /// Update for max oil saturation. void BlackoilPropsAdFromDeck::updateSatOilMax(const std::vector& saturation) { const int n = satOilMax_.size(); const int np = phase_usage_.num_phases; const int posOil = phase_usage_.phase_pos[Oil]; const double* s = saturation.data(); for (int i=0; i& BlackoilPropsAdFromDeck::satOilMax() const { return satOilMax_; } // Set max oil saturation vector void BlackoilPropsAdFromDeck::setSatOilMax(const std::vector& max_sat) { assert(satOilMax_.size() == max_sat.size()); satOilMax_ = max_sat; } /// Bubble point pressures std::vector BlackoilPropsAdFromDeck::bubblePointPressure(const Cells& cells, const V& T, const V& rs) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call bubblePointPressure(): gas phase not active."); } const int n = cells.size(); std::vector Pb(n, 0.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; try { Pb[i] = FluidSystem::oilPvt().saturationPressure(pvtRegionIdx, T[i], rs[i]); } catch (const NumericalProblem&) { // Ignore } } return Pb; } /// Dew point pressures std::vector BlackoilPropsAdFromDeck::dewPointPressure(const Cells& cells, const V& T, const V& rv) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call dewPointPressure(): gas phase not active."); } const int n = cells.size(); std::vector Pd(n, 0.0); for (int i = 0; i < n; ++i) { unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]]; try { Pd[i] = FluidSystem::gasPvt().saturationPressure(pvtRegionIdx, T[i], rv[i]); } catch (const NumericalProblem&) { // Ignore } } return Pd; } /// Set capillary pressure scaling according to pressure diff. and initial water saturation. /// \param[in] saturation Array of n*numPhases saturation values. /// \param[in] pc Array of n*numPhases capillary pressure values. void BlackoilPropsAdFromDeck::setSwatInitScaling(const std::vector& saturation, const std::vector& pc) { const int nc = rock_.numCells(); const int numActivePhases = numPhases(); for (int i = 0; i < nc; ++i) { double pcow = pc[numActivePhases*i + phase_usage_.phase_pos[Water]]; double swat = saturation[numActivePhases*i + phase_usage_.phase_pos[Water]]; satprops_->swatInitScaling(i, pcow, swat); } } /// Apply correction to rs/rv according to kw VAPPARS /// \param[in/out] r Array of n rs/rv values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the r and so values. /// \param[in] vap Correction parameter. void BlackoilPropsAdFromDeck::applyVap(V& r, const V& so, const std::vector& cells, const double vap) const { if (vap > 0.0) { const int n = cells.size(); V factor = V::Ones(n, 1); const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon()); for (int i=0; i vap_satmax_guard_ && so[i] < satOilMax_[cells[i]]) { // guard against too small saturation values. const double so_i= std::max(so[i],eps_sqrt); factor[i] = std::pow(so_i/satOilMax_[cells[i]], vap); } } r = factor*r; } } /// Apply correction to rs/rv according to kw VAPPARS /// \param[in/out] r Array of n rs/rv values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the r and so values. /// \param[in] vap Correction parameter. void BlackoilPropsAdFromDeck::applyVap(ADB& r, const ADB& so, const std::vector& cells, const double vap) const { if (vap > 0.0) { const int n = cells.size(); V factor = V::Ones(n, 1); const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon()); V dfactor_dso = V::Zero(n, 1); for (int i=0; i vap_satmax_guard_ && so.value()[i] < satOilMax_[cells[i]]) { // guard against too small saturation values. const double so_i= std::max(so.value()[i],eps_sqrt); factor[i] = std::pow(so_i/satOilMax_[cells[i]], vap); dfactor_dso[i] = vap*std::pow(so_i/satOilMax_[cells[i]], vap-1.0)/satOilMax_[cells[i]]; } } ADB::M dfactor_dso_diag(dfactor_dso.matrix().asDiagonal()); const int num_blocks = so.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dfactor_dso_diag * so.derivative()[block]; } r = ADB::function(std::move(factor), std::move(jacs))*r; } } /// Obtain the scaled critical oil in gas saturation values. /// \param[in] cells Array of cell indices. /// \return Array of critical oil in gas saturaion values. V BlackoilPropsAdFromDeck::scaledCriticalOilinGasSaturations(const Cells& cells) const { assert(phase_usage_.phase_used[Gas]); assert(phase_usage_.phase_used[Oil]); const int n = cells.size(); V sogcr = V::Zero(n); const MaterialLawManager& materialLawManager = satprops_->materialLawManager(); for (int i = 0; i < n; ++i) { const auto& scaledDrainageInfo = materialLawManager.oilWaterScaledEpsInfoDrainage(cells[i]); sogcr[i] = scaledDrainageInfo.Sogcr; } return sogcr; } /// Obtain the scaled critical gas saturation values. /// \param[in] cells Array of cell indices. /// \return Array of scaled critical gas saturaion values. V BlackoilPropsAdFromDeck::scaledCriticalGasSaturations(const Cells& cells) const { assert(phase_usage_.phase_used[Gas]); const int n = cells.size(); V sgcr = V::Zero(n); const MaterialLawManager& materialLawManager = satprops_->materialLawManager(); for (int i = 0; i < n; ++i) { const auto& scaledDrainageInfo = materialLawManager.oilWaterScaledEpsInfoDrainage(cells[i]); sgcr[i] = scaledDrainageInfo.Sgcr; } return sgcr; } } // namespace Opm