/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; std::cout << "******************************************************************************************\n"; std::cout << "* *\n"; std::cout << "* This is Flow (version 2015.04) *\n"; std::cout << "* *\n"; std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow that is part of OPM. *\n"; std::cout << "* For more information see: *\n"; std::cout << "* http://opm-project.org *\n"; std::cout << "* *\n"; std::cout << "******************************************************************************************\n\n"; // Read parameters, see if a deck was specified on the command line. std::cout << "--------------- Reading parameters ---------------" << std::endl; parameter::ParameterGroup param(argc, argv, false); if (!param.unhandledArguments().empty()) { if (param.unhandledArguments().size() != 1) { std::cerr << "You can only specify a single input deck on the command line.\n"; return EXIT_FAILURE; } else { param.insertParameter("deck_filename", param.unhandledArguments()[0]); } } // We must have an input deck. Grid and props will be read from that. if (!param.has("deck_filename")) { std::cerr << "This program must be run with an input deck.\n" "Specify the deck filename either\n" " a) as a command line argument by itself\n" " b) as a command line parameter with the syntax deck_filename=, or\n" " c) as a parameter in a parameter file (.param or .xml) passed to the program.\n"; return EXIT_FAILURE; } std::shared_ptr grid; std::shared_ptr props; std::shared_ptr new_props; std::shared_ptr rock_comp; BlackoilState state; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; std::string deck_filename = param.get("deck_filename"); // Write parameters used for later reference. bool output = param.getDefault("output", true); std::string output_dir; if (output) { // Create output directory if needed. output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { std::cerr << "Creating directories failed: " << fpath << std::endl; return EXIT_FAILURE; } // Write simulation parameters. param.writeParam(output_dir + "/simulation.param"); } std::string logFile = output_dir + "/LOGFILE.txt"; Opm::ParserPtr parser(new Opm::Parser()); { std::shared_ptr streamLog = std::make_shared(logFile , Opm::Log::DefaultMessageTypes); std::shared_ptr counterLog = std::make_shared(Opm::Log::DefaultMessageTypes); Opm::OpmLog::addBackend( "STREAM" , streamLog ); Opm::OpmLog::addBackend( "COUNTER" , counterLog ); } Opm::DeckConstPtr deck; std::shared_ptr eclipseState; try { deck = parser->parseFile(deck_filename); Opm::checkDeck(deck); eclipseState.reset(new Opm::EclipseState(deck)); } catch (const std::invalid_argument& e) { std::cerr << "Failed to create valid ECLIPSESTATE object. See logfile: " << logFile << std::endl; std::cerr << "Exception caught: " << e.what() << std::endl; return EXIT_FAILURE; } // Grid init std::vector porv = eclipseState->getDoubleGridProperty("PORV")->getData(); grid.reset(new GridManager(eclipseState->getEclipseGrid(), porv)); auto &cGrid = *grid->c_grid(); const PhaseUsage pu = Opm::phaseUsageFromDeck(deck); Opm::BlackoilOutputWriter outputWriter(cGrid, param, eclipseState, pu ); // Rock and fluid init props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, *grid->c_grid(), param)); new_props.reset(new BlackoilPropsAdFromDeck(deck, eclipseState, *grid->c_grid())); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. rock_comp.reset(new RockCompressibility(deck, eclipseState)); // Gravity. gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(*grid->c_grid(), *props, param, gravity[2], state); initBlackoilSurfvol(*grid->c_grid(), *props, state); enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour }; if (pu.phase_used[Oil] && pu.phase_used[Gas]) { const int np = props->numPhases(); const int nc = grid->c_grid()->number_of_cells; for (int c = 0; c < nc; ++c) { state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]] / state.surfacevol()[c*np + pu.phase_pos[Oil]]; } } } else if (deck->hasKeyword("EQUIL") && props->numPhases() == 3) { state.init(*grid->c_grid(), props->numPhases()); const double grav = param.getDefault("gravity", unit::gravity); initStateEquil(*grid->c_grid(), *props, deck, eclipseState, grav, state); state.faceflux().resize(grid->c_grid()->number_of_faces, 0.0); } else { initBlackoilStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state); } // The capillary pressure is scaled in new_props to match the scaled capillary pressure in props. if (deck->hasKeyword("SWATINIT")) { const int nc = grid->c_grid()->number_of_cells; std::vector cells(nc); for (int c = 0; c < nc; ++c) { cells[c] = c; } std::vector pc = state.saturation(); props->capPress(nc, state.saturation().data(), cells.data(), pc.data(),NULL); new_props->setSwatInitScaling(state.saturation(),pc); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Solver for Newton iterations. std::unique_ptr fis_solver; if (param.getDefault("use_cpr", true)) { fis_solver.reset(new NewtonIterationBlackoilCPR(param)); } else { fis_solver.reset(new NewtonIterationBlackoilSimple(param)); } Opm::ScheduleConstPtr schedule = eclipseState->getSchedule(); Opm::TimeMapConstPtr timeMap(schedule->getTimeMap()); SimulatorTimer simtimer; // initialize variables simtimer.init(timeMap); bool use_local_perm = param.getDefault("use_local_perm", true); Opm::DerivedGeology geology(*grid->c_grid(), *new_props, eclipseState, use_local_perm, grav); std::vector threshold_pressures = thresholdPressures(eclipseState, *grid->c_grid()); SimulatorFullyImplicitBlackoil simulator(param, *grid->c_grid(), geology, *new_props, rock_comp->isActive() ? rock_comp.get() : 0, *fis_solver, grav, deck->hasKeyword("DISGAS"), deck->hasKeyword("VAPOIL"), eclipseState, outputWriter, threshold_pressures); if (!schedule->initOnly()){ std::cout << "\n\n================ Starting main simulation loop ===============\n" << std::flush; SimulatorReport fullReport = simulator.run(simtimer, state); std::cout << "\n\n================ End of simulation ===============\n\n"; fullReport.reportFullyImplicit(std::cout); if (output) { std::string filename = output_dir + "/walltime.txt"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); fullReport.reportParam(tot_os); warnIfUnusedParams(param); } } else { outputWriter.writeInit( simtimer ); std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush; } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; return EXIT_FAILURE; }