// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::BaseOutputModule
*/
#ifndef EWOMS_BASE_OUTPUT_MODULE_HH
#define EWOMS_BASE_OUTPUT_MODULE_HH
#include "baseoutputwriter.hh"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm::Properties {
template
struct FluidSystem;
} // namespace Opm::Properties
namespace Opm {
#if __GNUC__ || __clang__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
#endif
/*!
* \brief The base class for writer modules.
*
* This class also provides some convenience methods for buffer
* management and is the base class for all other output writer
* modules.
*/
template
class BaseOutputModule
{
using Simulator = GetPropType;
using Model = GetPropType;
using Scalar = GetPropType;
using GridView = GetPropType;
using ElementContext = GetPropType;
using FluidSystem = GetPropType;
using DiscBaseOutputModule = GetPropType;
enum { numPhases = getPropValue() };
enum { numComponents = getPropValue() };
enum { numEq = getPropValue() };
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
using Vector = BaseOutputWriter::Vector;
using Tensor = BaseOutputWriter::Tensor;
public:
using ScalarBuffer = BaseOutputWriter::ScalarBuffer;
using VectorBuffer = BaseOutputWriter::VectorBuffer;
using TensorBuffer = BaseOutputWriter::TensorBuffer;
using EqBuffer = std::array;
using PhaseBuffer = std::array;
using ComponentBuffer = std::array;
using PhaseComponentBuffer = std::array, numPhases>;
using PhaseVectorBuffer = std::array;
BaseOutputModule(const Simulator& simulator)
: simulator_(simulator)
{}
virtual ~BaseOutputModule()
{}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to disk.
*
* The module can dynamically cast the writer to the desired
* concrete class. If the writer is incompatible with the module,
* this method should become a no-op.
*/
virtual void allocBuffers() = 0;
/*!
* \brief Modify the internal buffers according to the intensive quanties relevant
* for an element
*
* The module can dynamically cast the writer to the desired
* concrete class. If the writer is incompatible with the module,
* this method should become a no-op.
*/
virtual void processElement(const ElementContext& elemCtx) = 0;
/*!
* \brief Add all buffers to the VTK output writer.
*/
virtual void commitBuffers(BaseOutputWriter& writer) = 0;
/*!
* \brief Returns true iff the module needs to access the extensive quantities of a
* context to do its job.
*
* For example, this happens if velocities or gradients should be written.
*
* Always returning true here does not do any harm from the correctness perspective,
* but it slows down writing the output fields. Since most output modules only write
* intensive quantities, this method returns 'false' by default.
*/
virtual bool needExtensiveQuantities() const
{ return false; }
protected:
enum BufferType {
//! Buffer contains data associated with the degrees of freedom
DofBuffer,
//! Buffer contains data associated with the grid's vertices
VertexBuffer,
//! Buffer contains data associated with the grid's elements
ElementBuffer
};
/*!
* \brief Allocate the space for a buffer storing a scalar quantity
*/
void resizeScalarBuffer_(ScalarBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
buffer.resize(n);
std::fill(buffer.begin(), buffer.end(), 0.0);
}
/*!
* \brief Allocate the space for a buffer storing a tensorial quantity
*/
void resizeTensorBuffer_(TensorBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
buffer.resize(n);
Tensor nullMatrix(dimWorld, dimWorld, 0.0);
std::fill(buffer.begin(), buffer.end(), nullMatrix);
}
void resizeVectorBuffer_(VectorBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
buffer.resize(n);
Vector zerovector(dimWorld,0.0);
zerovector = 0.0;
std::fill(buffer.begin(), buffer.end(), zerovector);
}
/*!
* \brief Allocate the space for a buffer storing a equation specific
* quantity
*/
void resizeEqBuffer_(EqBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
for (unsigned i = 0; i < numEq; ++i) {
buffer[i].resize(n);
std::fill(buffer[i].begin(), buffer[i].end(), 0.0);
}
}
/*!
* \brief Allocate the space for a buffer storing a phase-specific
* quantity
*/
void resizePhaseBuffer_(PhaseBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
for (unsigned i = 0; i < numPhases; ++i) {
buffer[i].resize(n);
std::fill(buffer[i].begin(), buffer[i].end(), 0.0);
}
}
/*!
* \brief Allocate the space for a buffer storing a component
* specific quantity
*/
void resizeComponentBuffer_(ComponentBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
for (unsigned i = 0; i < numComponents; ++i) {
buffer[i].resize(n);
std::fill(buffer[i].begin(), buffer[i].end(), 0.0);
}
}
/*!
* \brief Allocate the space for a buffer storing a phase and
* component specific buffer
*/
void resizePhaseComponentBuffer_(PhaseComponentBuffer& buffer,
BufferType bufferType = DofBuffer)
{
size_t n;
if (bufferType == VertexBuffer)
n = static_cast(simulator_.gridView().size(dim));
else if (bufferType == ElementBuffer)
n = static_cast(simulator_.gridView().size(0));
else if (bufferType == DofBuffer)
n = simulator_.model().numGridDof();
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
for (unsigned i = 0; i < numPhases; ++i) {
for (unsigned j = 0; j < numComponents; ++j) {
buffer[i][j].resize(n);
std::fill(buffer[i][j].begin(), buffer[i][j].end(), 0.0);
}
}
}
/*!
* \brief Add a buffer containing scalar quantities to the result file.
*/
void commitScalarBuffer_(BaseOutputWriter& baseWriter,
const char *name,
ScalarBuffer& buffer,
BufferType bufferType = DofBuffer)
{
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachScalarDofData_(baseWriter, buffer, name);
else if (bufferType == VertexBuffer)
attachScalarVertexData_(baseWriter, buffer, name);
else if (bufferType == ElementBuffer)
attachScalarElementData_(baseWriter, buffer, name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
/*!
* \brief Add a buffer containing vectorial quantities to the result file.
*/
void commitVectorBuffer_(BaseOutputWriter& baseWriter,
const char *name,
VectorBuffer& buffer,
BufferType bufferType = DofBuffer)
{
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachVectorDofData_(baseWriter, buffer, name);
else if (bufferType == VertexBuffer)
attachVectorVertexData_(baseWriter, buffer, name);
else if (bufferType == ElementBuffer)
attachVectorElementData_(baseWriter, buffer, name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
/*!
* \brief Add a buffer containing tensorial quantities to the result file.
*/
void commitTensorBuffer_(BaseOutputWriter& baseWriter,
const char *name,
TensorBuffer& buffer,
BufferType bufferType = DofBuffer)
{
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachTensorDofData_(baseWriter, buffer, name);
else if (bufferType == VertexBuffer)
attachTensorVertexData_(baseWriter, buffer, name);
else if (bufferType == ElementBuffer)
attachTensorElementData_(baseWriter, buffer, name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
/*!
* \brief Add a buffer with as many variables as PDEs to the result file.
*/
void commitPriVarsBuffer_(BaseOutputWriter& baseWriter,
const char *pattern,
EqBuffer& buffer,
BufferType bufferType = DofBuffer)
{
char name[512];
for (unsigned i = 0; i < numEq; ++i) {
std::string eqName = simulator_.model().primaryVarName(i);
snprintf(name, 512, pattern, eqName.c_str());
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachScalarDofData_(baseWriter, buffer[i], name);
else if (bufferType == VertexBuffer)
attachScalarVertexData_(baseWriter, buffer[i], name);
else if (bufferType == ElementBuffer)
attachScalarElementData_(baseWriter, buffer[i], name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
}
/*!
* \brief Add a buffer with as many variables as PDEs to the result file.
*/
void commitEqBuffer_(BaseOutputWriter& baseWriter,
const char *pattern,
EqBuffer& buffer,
BufferType bufferType = DofBuffer)
{
char name[512];
for (unsigned i = 0; i < numEq; ++i) {
std::ostringstream oss;
oss << i;
snprintf(name, 512, pattern, oss.str().c_str());
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachScalarDofData_(baseWriter, buffer[i], name);
else if (bufferType == VertexBuffer)
attachScalarVertexData_(baseWriter, buffer[i], name);
else if (bufferType == ElementBuffer)
attachScalarElementData_(baseWriter, buffer[i], name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
}
/*!
* \brief Add a phase-specific buffer to the result file.
*/
void commitPhaseBuffer_(BaseOutputWriter& baseWriter,
const char *pattern,
PhaseBuffer& buffer,
BufferType bufferType = DofBuffer)
{
char name[512];
for (unsigned i = 0; i < numPhases; ++i) {
snprintf(name, 512, pattern, FluidSystem::phaseName(i));
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachScalarDofData_(baseWriter, buffer[i], name);
else if (bufferType == VertexBuffer)
attachScalarVertexData_(baseWriter, buffer[i], name);
else if (bufferType == ElementBuffer)
attachScalarElementData_(baseWriter, buffer[i], name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
}
/*!
* \brief Add a component-specific buffer to the result file.
*/
void commitComponentBuffer_(BaseOutputWriter& baseWriter,
const char *pattern,
ComponentBuffer& buffer,
BufferType bufferType = DofBuffer)
{
char name[512];
for (unsigned i = 0; i < numComponents; ++i) {
snprintf(name, 512, pattern, FluidSystem::componentName(i));
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachScalarDofData_(baseWriter, buffer[i], name);
else if (bufferType == VertexBuffer)
attachScalarVertexData_(baseWriter, buffer[i], name);
else if (bufferType == ElementBuffer)
attachScalarElementData_(baseWriter, buffer[i], name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
}
/*!
* \brief Add a phase and component specific quantities to the output.
*/
void commitPhaseComponentBuffer_(BaseOutputWriter& baseWriter,
const char *pattern,
PhaseComponentBuffer& buffer,
BufferType bufferType = DofBuffer)
{
char name[512];
for (unsigned i= 0; i < numPhases; ++i) {
for (unsigned j = 0; j < numComponents; ++j) {
snprintf(name, 512, pattern,
FluidSystem::phaseName(i),
FluidSystem::componentName(j));
if (bufferType == DofBuffer)
DiscBaseOutputModule::attachScalarDofData_(baseWriter, buffer[i][j], name);
else if (bufferType == VertexBuffer)
attachScalarVertexData_(baseWriter, buffer[i][j], name);
else if (bufferType == ElementBuffer)
attachScalarElementData_(baseWriter, buffer[i][j], name);
else
throw std::logic_error("bufferType must be one of Dof, Vertex or Element");
}
}
}
void attachScalarElementData_(BaseOutputWriter& baseWriter,
ScalarBuffer& buffer,
const char *name)
{ baseWriter.attachScalarElementData(buffer, name); }
void attachScalarVertexData_(BaseOutputWriter& baseWriter,
ScalarBuffer& buffer,
const char *name)
{ baseWriter.attachScalarVertexData(buffer, name); }
void attachVectorElementData_(BaseOutputWriter& baseWriter,
VectorBuffer& buffer,
const char *name)
{ baseWriter.attachVectorElementData(buffer, name); }
void attachVectorVertexData_(BaseOutputWriter& baseWriter,
VectorBuffer& buffer,
const char *name)
{ baseWriter.attachVectorVertexData(buffer, name); }
void attachTensorElementData_(BaseOutputWriter& baseWriter,
TensorBuffer& buffer,
const char *name)
{ baseWriter.attachTensorElementData(buffer, name); }
void attachTensorVertexData_(BaseOutputWriter& baseWriter,
TensorBuffer& buffer,
const char *name)
{ baseWriter.attachTensorVertexData(buffer, name); }
const Simulator& simulator_;
};
#if __GNUC__ || __clang__
#pragma GCC diagnostic pop
#endif
} // namespace Opm
#endif