/***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis, Klaus Mosthaf * * Copyright (C) 2009 by Andreas Lauser * * Institute of Hydraulic Engineering * * University of Stuttgart, Germany * * email: .@iws.uni-stuttgart.de * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * * \brief Tutorial problem for a fully coupled twophase box model. */ #ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/ #define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/ // the numerical model #include // the DUNE grid used #include // spatialy dependent parameters #include "tutorialspatialparameters_coupled.hh" // the components that are used #include #include namespace Dumux { // forward declaration of the problem class template class TutorialProblemCoupled; namespace Properties { // create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP, TutorialSpatialParametersCoupled)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dumux::TutorialProblemCoupled type;}; // Set the grid SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/ { typedef Dune::SGrid<2,2> type; static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/ { typedef typename type::ctype ctype; Dune::FieldVector cellRes; // vector holding resolution of the grid Dune::FieldVector lowerLeft(0.0); // Coordinate of lower left corner of the grid Dune::FieldVector upperRight; // Coordinate of upper right corner of the grid cellRes[0] = 100; cellRes[1] = 1; upperRight[0] = 300; upperRight[1] = 60; return new Dune::SGrid<2,2>(cellRes, lowerLeft, upperRight); } }; // Set the wetting phase SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/ { private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:wettingPhase}@*/ }; // Set the non-wetting phase SET_PROP(TutorialProblemCoupled, NonWettingPhase) { private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/ }; /*@\label{tutorial-coupled:2p-system-end}@*/ // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ } /*! * \ingroup TwoPBoxModel * * \brief Tutorial problem for a fully coupled twophase box model. */ // Definition of the actual problem template class TutorialProblemCoupled : public TwoPProblem /*@\label{tutorial-coupled:def-problem}@*/ { typedef TwoPProblem ParentType; typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView; // Grid dimension enum { dim = GridView::dimension }; // Types from DUNE-Grid typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim::Entity Vertex; typedef typename GridView::Intersection Intersection; typedef Dune::FieldVector GlobalPosition; // Dumux specific types typedef typename GET_PROP_TYPE(TypeTag, PTAG(TimeManager)) TimeManager; typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices; typedef typename GET_PROP_TYPE(TypeTag, PTAG(PrimaryVariables)) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, PTAG(BoundaryTypes)) BoundaryTypes; typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry; public: TutorialProblemCoupled(TimeManager &timeManager, const GridView &gridView) : ParentType(timeManager, gridView) { } // Specifies the problem name. This is used as a prefix for files // generated by the simulation. const char *name() const { return "tutorial_coupled"; } //! Returns true if a restart file should be written. /* The default behaviour is to write no restart file. */ bool shouldWriteRestartFile() const /*@\label{tutorial-coupled:restart}@*/ { return false; } //! Returns true if the current solution should be written to disk (i.e. as a VTK file) /*! The default behaviour is to write out the solution for * every time step. Else, the user has to change the divisor in this function. */ bool shouldWriteOutput() const /*@\label{tutorial-coupled:output}@*/ { return this->timeManager().timeStepIndex() > 0 && (this->timeManager().timeStepIndex() % 1 == 0); } // Return the temperature within a finite volume. We use constant // 10 degrees Celsius. Scalar temperature() const { return 283.15; }; // Specifies which kind of boundary condition should be used for // which equation for a finite volume on the boundary. void boundaryTypes(BoundaryTypes &BCtypes, const Vertex &vertex) const { const GlobalPosition &pos = vertex.geometry().center(); if (pos[0] < eps_) // Dirichlet conditions on left boundary BCtypes.setAllDirichlet(); else // neuman for the remaining boundaries BCtypes.setAllNeumann(); } // Evaluate the Dirichlet boundary conditions for a finite volume // on the grid boundary. Here, the 'values' parameter stores // primary variables. void dirichlet(PrimaryVariables &values, const Vertex &vertex) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 0.0; // 0 % oil saturation on left boundary } // Evaluate the boundary conditions for a Neumann boundary // segment. Here, the 'values' parameter stores the mass flux in // normal direction of each phase. Negative values mean influx. void neumann(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvElemGeom, const Intersection &isIt, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &pos = fvElemGeom.boundaryFace[boundaryFaceIdx].ipGlobal; Scalar right = this->bboxMax()[0]; // extraction of oil on the right boundary for approx. 1.e6 seconds if (pos[0] > right - eps_) { // oil outflux of 30 g/(m * s) on the right boundary. values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 3e-2; } else { // no-flow on the remaining Neumann-boundaries. values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 0; } } // Evaluate the initial value for a control volume. For this // method, the 'values' parameter stores primary variables. void initial(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 1.0; } // Evaluate the source term for all phases within a given // sub-control-volume. In this case, the 'values' parameter stores // the rate mass generated or annihilate per volume unit. Positive // values mean that mass is created. void source(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::contiWEqIdx] = 0.0; values[Indices::contiNEqIdx]= 0.0; } private: // small epsilon value static constexpr Scalar eps_ = 3e-6; }; } #endif