/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE WellModelTest #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_DUNE_FEM #include #else #include #endif using StandardWell = Opm::StandardWell; struct SetupTest { using Grid = UnstructuredGrid; using GridInit = Opm::GridInit; SetupTest () { Opm::Parser parser; auto deck = parser.parseFile("TESTWELLMODEL.DATA"); ecl_state.reset(new Opm::EclipseState(deck) ); { const Opm::TableManager table ( deck ); const Opm::Eclipse3DProperties eclipseProperties ( deck , table, ecl_state->getInputGrid()); const Opm::Runspec runspec (deck); schedule.reset( new Opm::Schedule(deck, ecl_state->getInputGrid(), eclipseProperties, runspec)); } // Create grid. const std::vector& porv = ecl_state->get3DProperties().getDoubleGridProperty("PORV").getData(); std::unique_ptr grid_init(new GridInit(*ecl_state, porv)); const Grid& grid = grid_init->grid(); // Create material law manager. std::vector compressed_to_cartesianIdx; Opm::createGlobalCellArray(grid, compressed_to_cartesianIdx); current_timestep = 0; // Create wells. wells_manager.reset(new Opm::WellsManager(*ecl_state, *schedule, summaryState, current_timestep, Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::cartDims(grid), Opm::UgGridHelpers::dimensions(grid), Opm::UgGridHelpers::cell2Faces(grid), Opm::UgGridHelpers::beginFaceCentroids(grid), false, std::unordered_set() ) ); }; std::unique_ptr wells_manager; std::unique_ptr ecl_state; std::unique_ptr schedule; Opm::SummaryState summaryState; int current_timestep; }; struct GlobalFixture { GlobalFixture() { int argcDummy = 1; const char *tmp[] = {"test_wellmodel"}; char **argvDummy = const_cast(tmp); // MPI setup. #if HAVE_DUNE_FEM Dune::Fem::MPIManager::initialize(argcDummy, argvDummy); #else Dune::MPIHelper::instance(argcDummy, argvDummy); #endif Opm::FlowMainEbos::setupParameters_(argcDummy, argvDummy); } }; BOOST_GLOBAL_FIXTURE(GlobalFixture); BOOST_AUTO_TEST_CASE(TestStandardWellInput) { const SetupTest setup_test; const Wells* wells = setup_test.wells_manager->c_wells(); const auto& wells_ecl = setup_test.schedule->getWells2(setup_test.current_timestep); BOOST_CHECK_EQUAL( wells_ecl.size(), 2); const Opm::Well2& well = wells_ecl[1]; const Opm::BlackoilModelParametersEbos param; // For the conversion between the surface volume rate and resrevoir voidage rate typedef Opm::BlackOilFluidSystem FluidSystem; using RateConverterType = Opm::RateConverter:: SurfaceToReservoirVoidage >; // Compute reservoir volumes for RESV controls. Opm::PhaseUsage phaseUsage; std::unique_ptr rateConverter; // Compute reservoir volumes for RESV controls. rateConverter.reset(new RateConverterType (phaseUsage, std::vector(10, 0))); const int pvtIdx = 0; const int num_comp = wells->number_of_phases; BOOST_CHECK_THROW( StandardWell( well, -1, wells, param, *rateConverter, pvtIdx, num_comp), std::invalid_argument); BOOST_CHECK_THROW( StandardWell( well, 4, nullptr , param, *rateConverter, pvtIdx, num_comp), std::invalid_argument); } BOOST_AUTO_TEST_CASE(TestBehavoir) { const SetupTest setup_test; const Wells* wells_struct = setup_test.wells_manager->c_wells(); const auto& wells_ecl = setup_test.schedule->getWells2(setup_test.current_timestep); const int current_timestep = setup_test.current_timestep; std::vector > wells; { const int nw = wells_struct ? (wells_struct->number_of_wells) : 0; const Opm::BlackoilModelParametersEbos param; for (int w = 0; w < nw; ++w) { const std::string well_name(wells_struct->name[w]); size_t index_well = 0; for (; index_well < wells_ecl.size(); ++index_well) { if (well_name == wells_ecl[index_well].name()) { break; } } // we should always be able to find the well in wells_ecl BOOST_CHECK(index_well != wells_ecl.size()); // For the conversion between the surface volume rate and resrevoir voidage rate typedef Opm::BlackOilFluidSystem FluidSystem; using RateConverterType = Opm::RateConverter:: SurfaceToReservoirVoidage >; // Compute reservoir volumes for RESV controls. // TODO: not sure why for this class the initlizer list does not work // otherwise we should make a meaningful const PhaseUsage here. Opm::PhaseUsage phaseUsage; std::unique_ptr rateConverter; // Compute reservoir volumes for RESV controls. rateConverter.reset(new RateConverterType (phaseUsage, std::vector(10, 0))); const int pvtIdx = 0; const int num_comp = wells_struct->number_of_phases; wells.emplace_back(new StandardWell(wells_ecl[index_well], current_timestep, wells_struct, param, *rateConverter, pvtIdx, num_comp) ); } } // first well, it is a production well from the deck { const auto& well = wells[0]; BOOST_CHECK_EQUAL(well->name(), "PROD1"); BOOST_CHECK(well->wellType() == PRODUCER); BOOST_CHECK(well->numEq == 3); BOOST_CHECK(well->numWellEq == 4); const auto& wc = well->wellControls(); const int ctrl_num = well_controls_get_num(wc); BOOST_CHECK(ctrl_num > 0); const auto& control = well_controls_get_current(wc); BOOST_CHECK(control >= 0); // GAS RATE CONTROL const auto& distr = well_controls_iget_distr(wc, control); BOOST_CHECK(distr[0] == 0.); BOOST_CHECK(distr[1] == 0.); BOOST_CHECK(distr[2] == 1.); } // second well, it is the injection well from the deck { const auto& well = wells[1]; BOOST_CHECK_EQUAL(well->name(), "INJE1"); BOOST_CHECK(well->wellType() == INJECTOR); BOOST_CHECK(well->numEq == 3); BOOST_CHECK(well->numWellEq == 4); const auto& wc = well->wellControls(); const int ctrl_num = well_controls_get_num(wc); BOOST_CHECK(ctrl_num > 0); const auto& control = well_controls_get_current(wc); BOOST_CHECK(control >= 0); // WATER RATE CONTROL const auto& distr = well_controls_iget_distr(wc, control); BOOST_CHECK(distr[0] == 1.); BOOST_CHECK(distr[1] == 0.); BOOST_CHECK(distr[2] == 0.); } }