/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILPROPSADINTERFACE_HEADER_INCLUDED #define OPM_BLACKOILPROPSADINTERFACE_HEADER_INCLUDED #include #include namespace Opm { /// This class is intended to present a fluid interface for /// three-phase black-oil that is easy to use with the AD-using /// simulators. /// /// Most methods are available in two overloaded versions, one /// taking a constant vector and returning the same, and one /// taking an AD type and returning the same. Derivatives are not /// returned separately by any method, only implicitly with the AD /// version of the methods. class BlackoilPropsAdInterface { public: /// Virtual destructor for inheritance. virtual ~BlackoilPropsAdInterface(); //////////////////////////// // Rock interface // //////////////////////////// /// \return D, the number of spatial dimensions. virtual int numDimensions() const = 0; /// \return N, the number of cells. virtual int numCells() const = 0; /// \return Array of N porosity values. virtual const double* porosity() const = 0; /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). virtual const double* permeability() const = 0; //////////////////////////// // Fluid interface // //////////////////////////// typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef std::vector Cells; /// \return Number of active phases (also the number of components). virtual int numPhases() const = 0; /// \return Object describing the active phases. virtual PhaseUsage phaseUsage() const = 0; // ------ Canonical named indices for each phase ------ /// Canonical named indices for each phase. enum PhaseIndex { Water = BlackoilPhases::Aqua, Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour, Aqua = BlackoilPhases::Aqua, Liquid = BlackoilPhases::Liquid, Vapour = BlackoilPhases::Vapour, MaxNumPhases = BlackoilPhases::MaxNumPhases}; // ------ Density ------ /// Densities of stock components at surface conditions. /// \return Array of 3 density values. virtual const double* surfaceDensity(int regionIdx = 0) const = 0; // ------ Viscosity ------ /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. virtual ADB muWat(const ADB& pw, const ADB& T, const Cells& cells) const = 0; /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. virtual ADB muOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const = 0; /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratios. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. virtual ADB muGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const = 0; // ------ Formation volume factor (b) ------ /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. virtual ADB bWat(const ADB& pw, const ADB& T, const Cells& cells) const = 0; /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. virtual ADB bOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const = 0; /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratios. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. virtual ADB bGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const = 0; // ------ Rs bubble point curve ------ /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. virtual ADB rsSat(const ADB& po, const Cells& cells) const = 0; /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. virtual ADB rsSat(const ADB& po, const ADB& so, const Cells& cells) const = 0; // ------ Rv condensation curve ------ /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n condensation point values for Rv. virtual ADB rvSat(const ADB& po, const Cells& cells) const = 0; /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n condensation point values for Rv. virtual ADB rvSat(const ADB& po, const ADB& so, const Cells& cells) const = 0; // ------ Relative permeability ------ /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. virtual std::vector relperm(const V& sw, const V& so, const V& sg, const Cells& cells) const = 0; /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. virtual std::vector relperm(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const = 0; /// Capillary pressure for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n capillary pressure values, /// containing the offsets for each p_g, p_o, p_w. The capillary pressure between /// two arbitrary phases alpha and beta is then given as p_alpha - p_beta. virtual std::vector capPress(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const = 0; /// Saturation update for hysteresis behavior. /// \param[in] cells Array of n cell indices to be associated with the saturation values. virtual void updateSatHyst(const std::vector& saturation, const std::vector& cells) = 0; /// Update for max oil saturation. virtual void updateSatOilMax(const std::vector& saturation) = 0; }; } // namespace Opm #endif // OPM_BLACKOILPROPSADINTERFACE_HEADER_INCLUDED