/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2020 Equinor ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #if HAVE_UMFPACK #include #endif // HAVE_UMFPACK #include namespace { template ValueType haalandFormular(const ValueType& re, const double diameter, const double roughness) { const ValueType value = -3.6 * log10(6.9 / re + std::pow(roughness / (3.7 * diameter), 10. / 9.) ); // sqrt(1/f) should be non-positive assert(value >= 0.0); return 1. / (value * value); } // water in oil emulsion viscosity // TODO: maybe it should be two different ValueTypes. When we calculate the viscosity for transitional zone template ValueType WIOEmulsionViscosity(const ValueType& oil_viscosity, const ValueType& water_liquid_fraction, const double max_visco_ratio) { const ValueType temp_value = 1. / (1. - (0.8415 / 0.7480 * water_liquid_fraction) ); const ValueType viscosity_ratio = pow(temp_value, 2.5); if (viscosity_ratio <= max_visco_ratio) { return oil_viscosity * viscosity_ratio; } else { return oil_viscosity * max_visco_ratio; } } // oil in water emulsion viscosity template ValueType OIWEmulsionViscosity(const ValueType& water_viscosity, const ValueType& water_liquid_fraction, const double max_visco_ratio) { const ValueType temp_value = 1. / (1. - (0.6019 / 0.6410) * (1. - water_liquid_fraction) ); const ValueType viscosity_ratio = pow(temp_value, 2.5); if (viscosity_ratio <= max_visco_ratio) { return water_viscosity * viscosity_ratio; } else { return water_viscosity * max_visco_ratio; } } } namespace Opm { namespace mswellhelpers { /// Applies umfpack and checks for singularity template VectorType applyUMFPack(Dune::UMFPack& linsolver, VectorType x) { #if HAVE_UMFPACK // The copy of x seems mandatory for calling UMFPack! VectorType y(x.size()); y = 0.; // Object storing some statistics about the solving process Dune::InverseOperatorResult res; // Solve linsolver.apply(y, x, res); // Checking if there is any inf or nan in y // it will be the solution before we find a way to catch the singularity of the matrix for (size_t i_block = 0; i_block < y.size(); ++i_block) { for (size_t i_elem = 0; i_elem < y[i_block].size(); ++i_elem) { if (std::isinf(y[i_block][i_elem]) || std::isnan(y[i_block][i_elem]) ) { const std::string msg{"nan or inf value found after UMFPack solve due to singular matrix"}; OpmLog::debug(msg); OPM_THROW_NOLOG(NumericalProblem, msg); } } } return y; #else // this is not thread safe OPM_THROW(std::runtime_error, "Cannot use applyUMFPack() without UMFPACK. " "Reconfigure opm-simulators with SuiteSparse/UMFPACK support and recompile."); #endif // HAVE_UMFPACK } template Dune::Matrix invertWithUMFPack(const int size, const int bsize, Dune::UMFPack& linsolver) { #if HAVE_UMFPACK VectorType e(size); e = 0.0; // Make a full block matrix. Dune::Matrix inv(size, size); // Create inverse by passing basis vectors to the solver. for (int ii = 0; ii < size; ++ii) { for (int jj = 0; jj < bsize; ++jj) { e[ii][jj] = 1.0; auto col = applyUMFPack(linsolver, e); for (int cc = 0; cc < size; ++cc) { for (int dd = 0; dd < bsize; ++dd) { inv[cc][ii][dd][jj] = col[cc][dd]; } } e[ii][jj] = 0.0; } } return inv; #else // this is not thread safe OPM_THROW(std::runtime_error, "Cannot use invertWithUMFPack() without UMFPACK. " "Reconfigure opm-simulators with SuiteSparse/UMFPACK support and recompile."); #endif // HAVE_UMFPACK } template VectorType invDX(const MatrixType& D, VectorType x, DeferredLogger& deferred_logger) { // the function will change the value of x, so we should not use reference of x here. // TODO: store some of the following information to avoid to call it again and again for // efficiency improvement. // Bassically, only the solve / apply step is different. VectorType y(x.size()); y = 0.; Dune::MatrixAdapter linearOperator(D); // Sequential incomplete LU decomposition as the preconditioner Dune::SeqILU preconditioner(D, 1.0); // Dune::SeqILUn preconditioner(D, 1, 0.92); // Dune::SeqGS preconditioner(D, 1, 1); // Dune::SeqJac preconditioner(D, 1, 1); // Preconditioned BICGSTAB solver Dune::BiCGSTABSolver linsolver(linearOperator, preconditioner, 1.e-8, // desired residual reduction factor 250, // maximum number of iterations 0); // verbosity of the solver */ // Object storing some statistics about the solving process Dune::InverseOperatorResult res; // Solve linsolver.apply(y, x, res); if ( !res.converged ) { OPM_DEFLOG_THROW(NumericalProblem, "the invDX did not converge ", deferred_logger); } return y; } template ValueType frictionPressureLoss(const double l, const double diameter, const double area, const double roughness, const ValueType& density, const ValueType& w, const ValueType& mu) { // Reynolds number const ValueType re = abs( diameter * w / (area * mu)); constexpr double re_value1 = 2000.; constexpr double re_value2 = 4000.; if (re < re_value1) { // not using the formula directly because of the division with very small w // might introduce inf/nan entries in Jacobian matrix return 32.* mu * l * abs(w) / (area * diameter *diameter * density); } ValueType f; if (re > re_value2) { f = haalandFormular(re, diameter, roughness); } else { // in between constexpr double f1 = 16. / re_value1; const ValueType f2 = haalandFormular(re_value2, diameter, roughness); f = (f2 - f1) / (re_value2 - re_value1) * (re - re_value1) + f1; } // \Note: a factor of 2 needs to be here based on the dimensional analysis return 2. * f * l * w * w / (area * area * diameter * density); } template ValueType valveContrictionPressureLoss(const ValueType& mass_rate, const ValueType& density, const double area_con, const double cv) { // the formulation is adjusted a little bit for convinience // velocity = mass_rate / (density * area) is applied to the original formulation const double area = (area_con > 1.e-10 ? area_con : 1.e-10); return mass_rate * mass_rate / (2. * density * cv * cv * area * area); } template ValueType velocityHead(const double area, const ValueType& mass_rate, const ValueType& density) { // \Note: a factor of 2 is added to the formulation in order to match results from the // reference simulator. This is inline with what is done for the friction loss. return (mass_rate * mass_rate / (area * area * density)); } template ValueType emulsionViscosity(const ValueType& water_fraction, const ValueType& water_viscosity, const ValueType& oil_fraction, const ValueType& oil_viscosity, const SICD& sicd) { const double width_transition = sicd.widthTransitionRegion(); // it is just for now, we should be able to treat it. if (width_transition <= 0.) { OPM_THROW(std::runtime_error, "Not handling non-positive transition width now"); } const double critical_value = sicd.criticalValue(); const ValueType transition_start_value = critical_value - width_transition / 2.0; const ValueType transition_end_value = critical_value + width_transition / 2.0; const ValueType liquid_fraction = water_fraction + oil_fraction; // if there is no liquid, we just return zero if (liquid_fraction == 0.) { return 0.; } const ValueType water_liquid_fraction = water_fraction / liquid_fraction; const double max_visco_ratio = sicd.maxViscosityRatio(); if (water_liquid_fraction <= transition_start_value) { return WIOEmulsionViscosity(oil_viscosity, water_liquid_fraction, max_visco_ratio); } else if (water_liquid_fraction >= transition_end_value) { return OIWEmulsionViscosity(water_viscosity, water_liquid_fraction, max_visco_ratio); } else { // in the transition region const ValueType viscosity_start_transition = WIOEmulsionViscosity(oil_viscosity, transition_start_value, max_visco_ratio); const ValueType viscosity_end_transition = OIWEmulsionViscosity(water_viscosity, transition_end_value, max_visco_ratio); const ValueType emulsion_viscosity = (viscosity_start_transition * (transition_end_value - water_liquid_fraction) + viscosity_end_transition * (water_liquid_fraction - transition_start_value) ) / width_transition; return emulsion_viscosity; } } template using Vec = Dune::BlockVector>; template using Mat = Dune::BCRSMatrix>; #define INSTANCE_UMF(Dim) \ template Vec applyUMFPack,Vec>(Dune::UMFPack>&, \ Vec); \ template Dune::Matrix::block_type> \ invertWithUMFPack,Mat>(const int, const int, Dune::UMFPack>&); INSTANCE_UMF(2) INSTANCE_UMF(3) INSTANCE_UMF(4) #define INSTANCE_IMPL(...) \ template __VA_ARGS__ \ frictionPressureLoss<__VA_ARGS__>(const double, \ const double, \ const double, \ const double, \ const __VA_ARGS__&, \ const __VA_ARGS__&, \ const __VA_ARGS__&); \ template __VA_ARGS__ \ valveContrictionPressureLoss<__VA_ARGS__>(const __VA_ARGS__& mass_rate, \ const __VA_ARGS__& density, \ const double, const double); \ template __VA_ARGS__ \ velocityHead<__VA_ARGS__>(const double, const __VA_ARGS__&, const __VA_ARGS__&); \ template __VA_ARGS__ \ emulsionViscosity<__VA_ARGS__>(const __VA_ARGS__&, \ const __VA_ARGS__&, \ const __VA_ARGS__&, \ const __VA_ARGS__&, \ const SICD&); #define INSTANCE_EVAL(Dim) \ INSTANCE_IMPL(DenseAd::Evaluation) INSTANCE_EVAL(3) INSTANCE_EVAL(4) INSTANCE_EVAL(5) INSTANCE_EVAL(6) INSTANCE_EVAL(7) INSTANCE_EVAL(8) INSTANCE_EVAL(9) } // namespace mswellhelpers } // namespace Opm