/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILPROPERTIESFROMDECK_HEADER_INCLUDED #define OPM_BLACKOILPROPERTIESFROMDECK_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include struct UnstructuredGrid; namespace Opm { /// Concrete class implementing the blackoil property interface, /// reading all data and properties from eclipse deck input. class BlackoilPropertiesFromDeck : public BlackoilPropertiesInterface { public: typedef typename SaturationPropsFromDeck::MaterialLawManager MaterialLawManager; /// Initialize from deck and grid. /// \param[in] deck Deck input parser /// \param[in] grid Grid to which property object applies, needed for the /// mapping from cell indices (typically from a processed grid) /// to logical cartesian indices consistent with the deck. BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const UnstructuredGrid& grid, bool init_rock=true ); /// Initialize from deck, grid and parameters. /// \param[in] deck Deck input parser /// \param[in] grid Grid to which property object applies, needed for the /// mapping from cell indices (typically from a processed grid) /// to logical cartesian indices consistent with the deck. /// \param[in] param Parameters. Accepted parameters include: /// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables. /// sat_tab_size (200) number of uniform sample points for saturation tables. /// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2"). /// For both size parameters, a 0 or negative value indicates that no spline fitting is to /// be done, and the input fluid data used directly for linear interpolation. BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const UnstructuredGrid& grid, const parameter::ParameterGroup& param, bool init_rock=true); BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, int number_of_cells, const int* global_cell, const int* cart_dims, bool init_rock=true); BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, int number_of_cells, const int* global_cell, const int* cart_dims, const parameter::ParameterGroup& param, bool init_rock=true); BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, const parameter::ParameterGroup& param, bool init_rock=true); /// Destructor. virtual ~BlackoilPropertiesFromDeck(); // ---- Rock interface ---- /// \return D, the number of spatial dimensions. virtual int numDimensions() const; /// \return N, the number of cells. virtual int numCells() const; /// Return an array containing the PVT table index for each /// grid cell virtual const int* cellPvtRegionIndex() const { return &cellPvtRegionIdx_[0]; } /// \return Array of N porosity values. virtual const double* porosity() const; /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). virtual const double* permeability() const; // ---- Fluid interface ---- /// \return P, the number of phases (also the number of components). virtual int numPhases() const; /// \return Object describing the active phases. virtual PhaseUsage phaseUsage() const; /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] T Array of n temperature values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] mu Array of nP viscosity values, array must be valid before calling. /// \param[out] dmudp If non-null: array of nP viscosity derivative values, /// array must be valid before calling. virtual void viscosity(const int n, const double* p, const double* T, const double* z, const int* cells, double* mu, double* dmudp) const; /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] T Array of n temperature values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] A Array of nP^2 values, array must be valid before calling. /// The P^2 values for a cell give the matrix A = RB^{-1} which /// relates z to u by z = Au. The matrices are output in Fortran order. /// \param[out] dAdp If non-null: array of nP^2 matrix derivative values, /// array must be valid before calling. The matrices are output /// in Fortran order. virtual void matrix(const int n, const double* p, const double* T, const double* z, const int* cells, double* A, double* dAdp) const; /// Densities of stock components at reservoir conditions. /// \param[in] n Number of data points. /// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the /// matrix A = RB^{-1} which relates z to u by z = Au. The matrices /// are assumed to be in Fortran order, and are typically the result /// of a call to the method matrix(). /// \param[in] cells The index of the grid cell of each data point. /// \param[out] rho Array of nP density values, array must be valid before calling. virtual void density(const int n, const double* A, const int* cells, double* rho) const; /// Densities of stock components at surface conditions. /// \return Array of P density values. virtual const double* surfaceDensity(int cellIdx = 0) const; /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) virtual void relperm(const int n, const double* s, const int* cells, double* kr, double* dkrds) const; /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) virtual void capPress(const int n, const double* s, const int* cells, double* pc, double* dpcds) const; /// Obtain the range of allowable saturation values. /// In cell cells[i], saturation of phase p is allowed to be /// in the interval [smin[i*P + p], smax[i*P + p]]. /// \param[in] n Number of data points. /// \param[in] cells Array of n cell indices. /// \param[out] smin Array of nP minimum s values, array must be valid before calling. /// \param[out] smax Array of nP maximum s values, array must be valid before calling. virtual void satRange(const int n, const int* cells, double* smin, double* smax) const; /// Update capillary pressure scaling according to pressure diff. and initial water saturation. /// \param[in] cell Cell index. /// \param[in] pcow P_oil - P_water. /// \param[in/out] swat Water saturation. / Possibly modified Water saturation. virtual void swatInitScaling(const int cell, const double pcow, double & swat); const OilPvtMultiplexer& oilPvt() const { return oilPvt_; } const GasPvtMultiplexer& gasPvt() const { return gasPvt_; } const WaterPvtMultiplexer& waterPvt() const { return waterPvt_; } private: int getTableIndex_(const int* pvtTableIdx, int cellIdx) const { if (!pvtTableIdx) return 0; return pvtTableIdx[cellIdx]; } void initSurfaceDensities_(const Opm::Deck& deck); void compute_B_(const int n, const double* p, const double* T, const double* z, const int* cells, double* B) const; void compute_dBdp_(const int n, const double* p, const double* T, const double* z, const int* cells, double* B, double* dBdp) const; void compute_R_(const int n, const double* p, const double* T, const double* z, const int* cells, double* R) const; void compute_dRdp_(const int n, const double* p, const double* T, const double* z, const int* cells, double* R, double* dRdp) const; void init(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, bool init_rock); void init(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, const parameter::ParameterGroup& param, bool init_rock); RockFromDeck rock_; PhaseUsage phaseUsage_; std::vector cellPvtRegionIdx_; OilPvtMultiplexer oilPvt_; GasPvtMultiplexer gasPvt_; WaterPvtMultiplexer waterPvt_; std::shared_ptr materialLawManager_; std::shared_ptr satprops_; std::vector surfaceDensities_; mutable std::vector B_; mutable std::vector dB_; mutable std::vector R_; mutable std::vector dR_; }; } // namespace Opm #endif // OPM_BLACKOILPROPERTIESFROMDECK_HEADER_INCLUDED