/* Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_AQUIFERCT_HEADER_INCLUDED #define OPM_AQUIFERCT_HEADER_INCLUDED #include namespace Opm { template class AquiferCarterTracy: public AquiferInterface { public: typedef AquiferInterface Base; using typename Base::Simulator; using typename Base::ElementContext; using typename Base::FluidSystem; using typename Base::BlackoilIndices; using typename Base::RateVector; using typename Base::IntensiveQuantities; using typename Base::Eval; using typename Base::Scalar; using typename Base::FluidState; using Base::waterCompIdx; using Base::waterPhaseIdx; AquiferCarterTracy( const Aquancon::AquanconOutput& connection, const std::unordered_map& cartesian_to_compressed, const Simulator& ebosSimulator, const AquiferCT::AQUCT_data& aquct_data) : Base(connection, cartesian_to_compressed, ebosSimulator) , aquct_data_(aquct_data) {} void endTimeStep() { for (const auto& Qai: Base::Qai_) { Base::W_flux_ += Qai*Base::ebos_simulator_.timeStepSize(); } } protected: // Variables constants const AquiferCT::AQUCT_data aquct_data_; Scalar beta_; // Influx constant // This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer inline void initializeConnections(const Aquancon::AquanconOutput& connection) { const auto& eclState = Base::ebos_simulator_.vanguard().eclState(); const auto& ugrid = Base::ebos_simulator_.vanguard().grid(); const auto& grid = eclState.getInputGrid(); Base::cell_idx_ = connection.global_index; auto globalCellIdx = ugrid.globalCell(); assert( Base::cell_idx_ == connection.global_index); assert( (Base::cell_idx_.size() <= connection.influx_coeff.size()) ); assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) ); assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) ); // We hack the cell depth values for now. We can actually get it from elementcontext pos Base::cell_depth_.resize(Base::cell_idx_.size(), aquct_data_.d0); Base::alphai_.resize(Base::cell_idx_.size(), 1.0); Base::faceArea_connected_.resize(Base::cell_idx_.size(),0.0); auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid); auto faceCells = Opm::UgGridHelpers::faceCells(ugrid); // Translate the C face tag into the enum used by opm-parser's TransMult class Opm::FaceDir::DirEnum faceDirection; // denom_face_areas is the sum of the areas connected to an aquifer Scalar denom_face_areas = 0.; Base::cellToConnectionIdx_.resize(Base::ebos_simulator_.gridView().size(/*codim=*/0), -1); for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) { const int cell_index = Base::cartesian_to_compressed_.at(Base::cell_idx_[idx]); Base::cellToConnectionIdx_[cell_index] = idx; const auto cellFacesRange = cell2Faces[cell_index]; for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) { // The index of the face in the compressed grid const int faceIdx = *cellFaceIter; // the logically-Cartesian direction of the face const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter); switch(faceTag) { case 0: faceDirection = Opm::FaceDir::XMinus; break; case 1: faceDirection = Opm::FaceDir::XPlus; break; case 2: faceDirection = Opm::FaceDir::YMinus; break; case 3: faceDirection = Opm::FaceDir::YPlus; break; case 4: faceDirection = Opm::FaceDir::ZMinus; break; case 5: faceDirection = Opm::FaceDir::ZPlus; break; default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined"); } if (faceDirection == connection.reservoir_face_dir.at(idx)) { Base::faceArea_connected_.at(idx) = Base::getFaceArea(faceCells, ugrid, faceIdx, idx, connection); denom_face_areas += ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) ); } } auto cellCenter = grid.getCellCenter(Base::cell_idx_.at(idx)); Base::cell_depth_.at(idx) = cellCenter[2]; } const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon()); for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) { Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero 0. : ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) )/denom_face_areas; } } inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td) { // We use the opm-common numeric linear interpolator pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td); pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td); } inline Scalar dpai(int idx) { Scalar dp = Base::pa0_ + Base::rhow_.at(idx).value()*Base::gravity_()*(Base::cell_depth_.at(idx) - aquct_data_.d0) - Base::pressure_previous_.at(idx); return dp; } // This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator) { const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / Base::Tc_; const Scalar td = simulator.time() / Base::Tc_; Scalar PItdprime = 0.; Scalar PItd = 0.; getInfluenceTableValues(PItd, PItdprime, td_plus_dt); a = 1.0/Base::Tc_ * ( (beta_ * dpai(idx)) - (Base::W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime ); b = beta_ / (Base::Tc_ * ( PItd - td*PItdprime)); } // This function implements Eq 5.7 of the EclipseTechnicalDescription inline void calculateInflowRate(int idx, const Simulator& simulator) { Scalar a, b; calculateEqnConstants(a,b,idx,simulator); Base::Qai_.at(idx) = Base::alphai_.at(idx)*( a - b * ( Base::pressure_current_.at(idx) - Base::pressure_previous_.at(idx) ) ); } inline void calculateAquiferConstants() { // We calculate the influx constant beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o; // We calculate the time constant Base::Tc_ = Base::mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o / ( aquct_data_.k_a * aquct_data_.c1 ); } inline void calculateAquiferCondition() { int pvttableIdx = aquct_data_.pvttableID - 1; Base::rhow_.resize(Base::cell_idx_.size(),0.); if (!aquct_data_.p0) { Base::pa0_ = calculateReservoirEquilibrium(); } else { Base::pa0_ = *(aquct_data_.p0); } // use the thermodynamic state of the first active cell as a // reference. there might be better ways to do this... ElementContext elemCtx(Base::ebos_simulator_); auto elemIt = Base::ebos_simulator_.gridView().template begin(); elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); // Initialize a FluidState object first FluidState fs_aquifer; // We use the temperature of the first cell connected to the aquifer // Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs fs_aquifer.assign( iq0.fluidState() ); Eval temperature_aq, pa0_mean; temperature_aq = fs_aquifer.temperature(0); pa0_mean = Base::pa0_; Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean); Base::mu_w_ = mu_w_aquifer.value(); } // This function is for calculating the aquifer properties from equilibrium state with the reservoir inline Scalar calculateReservoirEquilibrium() { // Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices std::vector pw_aquifer; Scalar water_pressure_reservoir; ElementContext elemCtx(Base::ebos_simulator_); const auto& gridView = Base::ebos_simulator_.gridView(); auto elemIt = gridView.template begin(); const auto& elemEndIt = gridView.template end(); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); int idx = Base::cellToConnectionIdx_[cellIdx]; if (idx < 0) continue; elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = iq0.fluidState(); water_pressure_reservoir = fs.pressure(waterPhaseIdx).value(); Base::rhow_[idx] = fs.density(waterPhaseIdx); pw_aquifer.push_back( (water_pressure_reservoir - Base::rhow_[idx].value()*Base::gravity_()*(Base::cell_depth_[idx] - aquct_data_.d0))*Base::alphai_[idx] ); } // We take the average of the calculated equilibrium pressures. Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size(); return aquifer_pres_avg; } }; // class AquiferCarterTracy } // namespace Opm #endif