/* Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics. Copyright 2016 - 2018 Equinor ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 Norce AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include namespace Opm { template BlackoilWellModel:: BlackoilWellModel(Simulator& ebosSimulator) : ebosSimulator_(ebosSimulator) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) { terminal_output_ = false; if (ebosSimulator.gridView().comm().rank() == 0) terminal_output_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput); // Create the guide rate container. guideRate_.reset(new GuideRate (ebosSimulator_.vanguard().schedule())); // calculate the number of elements of the compressed sequential grid. this needs // to be done in two steps because the dune communicator expects a reference as // argument for sum() const auto& gridView = ebosSimulator_.gridView(); number_of_cells_ = gridView.size(/*codim=*/0); global_nc_ = gridView.comm().sum(number_of_cells_); // Set up cartesian mapping. const auto& grid = ebosSimulator_.vanguard().grid(); const auto& cartDims = Opm::UgGridHelpers::cartDims(grid); setupCartesianToCompressed_(Opm::UgGridHelpers::globalCell(grid), cartDims[0]*cartDims[1]*cartDims[2]); } template void BlackoilWellModel:: init() { const Opm::EclipseState& eclState = ebosSimulator_.vanguard().eclState(); extractLegacyCellPvtRegionIndex_(); extractLegacyDepth_(); phase_usage_ = phaseUsageFromDeck(eclState); gravity_ = ebosSimulator_.problem().gravity()[2]; initial_step_ = true; // add the eWoms auxiliary module for the wells to the list ebosSimulator_.model().addAuxiliaryModule(this); is_cell_perforated_.resize(number_of_cells_, false); } template void BlackoilWellModel:: addNeighbors(std::vector& neighbors) const { if (!param_.matrix_add_well_contributions_) { return; } // Create cartesian to compressed mapping const auto& schedule_wells = schedule().getWellsatEnd(); const auto& cartesianSize = Opm::UgGridHelpers::cartDims(grid()); // initialize the additional cell connections introduced by wells. for (const auto& well : schedule_wells) { std::vector wellCells; // All possible connections of the well const auto& connectionSet = well.getConnections(); wellCells.reserve(connectionSet.size()); for ( size_t c=0; c < connectionSet.size(); c++ ) { const auto& connection = connectionSet.get(c); int i = connection.getI(); int j = connection.getJ(); int k = connection.getK(); int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k); int compressed_idx = cartesian_to_compressed_.at(cart_grid_idx); if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells. wellCells.push_back(compressed_idx); } } for (int cellIdx : wellCells) { neighbors[cellIdx].insert(wellCells.begin(), wellCells.end()); } } } template void BlackoilWellModel:: linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res) { if (!localWellsActive()) return; if (!param_.matrix_add_well_contributions_) { // if the well contributions are not supposed to be included explicitly in // the matrix, we only apply the vector part of the Schur complement here. for (const auto& well: well_container_) { // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } return; } for (const auto& well: well_container_) { well->addWellContributions(jacobian); // applying the well residual to reservoir residuals // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } } /// Return true if any well has a THP constraint. template bool BlackoilWellModel:: hasTHPConstraints() const { int local_result = false; const auto& summaryState = ebosSimulator_.vanguard().summaryState(); for (const auto& well : well_container_) { if (well->wellHasTHPConstraints(summaryState)) { local_result=true; } } return grid().comm().max(local_result); } /// Return true if the well was found and shut. template bool BlackoilWellModel:: forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time) { // Only add the well to the closed list on the // process that owns it. int well_was_shut = 0; for (const auto& well : well_container_) { if (well->name() == wellname && !well->wellIsStopped()) { if (well->underPredictionMode()) { wellTestState_.closeWell(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time); well_was_shut = 1; } break; } } // Communicate across processes if a well was shut. well_was_shut = ebosSimulator_.vanguard().grid().comm().max(well_was_shut); // Only log a message on the output rank. if (terminal_output_ && well_was_shut) { const std::string msg = "Well " + wellname + " will be shut because it cannot get converged."; OpmLog::info(msg); } return (well_was_shut == 1); } template void BlackoilWellModel:: beginReportStep(const int timeStepIdx) { Opm::DeferredLogger local_deferredLogger; report_step_starts_ = true; const Grid& grid = ebosSimulator_.vanguard().grid(); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); int globalNumWells = 0; // Make wells_ecl_ contain only this partition's non-shut wells. { const auto& defunct_well_names = ebosSimulator_.vanguard().defunctWellNames(); auto is_shut_or_defunct = [&defunct_well_names](const Well& well) { return (well.getStatus() == Well::Status::SHUT) || (defunct_well_names.find(well.name()) != defunct_well_names.end()); }; auto w = schedule().getWells(timeStepIdx); globalNumWells = w.size(); w.erase(std::remove_if(w.begin(), w.end(), is_shut_or_defunct), w.end()); wells_ecl_.swap(w); } initializeWellPerfData(); // Wells are active if they are active wells on at least // one process. wells_active_ = localWellsActive() ? 1 : 0; wells_active_ = grid.comm().max(wells_active_); // The well state initialize bhp with the cell pressure in the top cell. // We must therefore provide it with updated cell pressures size_t nc = number_of_cells_; std::vector cellPressures(nc, 0.0); ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator_.vanguard().gridView(); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) { continue; } elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); // copy of get perfpressure in Standard well // exept for value double perf_pressure = 0.0; if (Indices::oilEnabled) { perf_pressure = fs.pressure(FluidSystem::oilPhaseIdx).value(); } else { if (Indices::waterEnabled) { perf_pressure = fs.pressure(FluidSystem::waterPhaseIdx).value(); } else { perf_pressure = fs.pressure(FluidSystem::gasPhaseIdx).value(); } } cellPressures[cellIdx] = perf_pressure; } well_state_.init(cellPressures, schedule(), wells_ecl_, timeStepIdx, &previous_well_state_, phase_usage_, well_perf_data_, summaryState, globalNumWells); // handling MS well related if (param_.use_multisegment_well_&& anyMSWellOpenLocal()) { // if we use MultisegmentWell model well_state_.initWellStateMSWell(wells_ecl_, phase_usage_, &previous_well_state_); } const int nw = wells_ecl_.size(); for (int w = 0; w (number_of_cells_, 0))); rateConverter_->template defineState(ebosSimulator_); // update VFP properties vfp_properties_.reset (new VFPProperties ( schedule().getVFPInjTables(timeStepIdx), schedule().getVFPProdTables(timeStepIdx)) ); // update the previous well state. This is used to restart failed steps. previous_well_state_ = well_state_; } // called at the beginning of a time step template void BlackoilWellModel:: beginTimeStep() { Opm::DeferredLogger local_deferredLogger; well_state_ = previous_well_state_; const int reportStepIdx = ebosSimulator_.episodeIndex(); const double simulationTime = ebosSimulator_.time(); int exception_thrown = 0; try { // test wells wellTesting(reportStepIdx, simulationTime, local_deferredLogger); // create the well container well_container_ = createWellContainer(reportStepIdx); // do the initialization for all the wells // TODO: to see whether we can postpone of the intialization of the well containers to // optimize the usage of the following several member variables for (auto& well : well_container_) { well->init(&phase_usage_, depth_, gravity_, number_of_cells_); } // update the updated cell flag std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false); for (auto& well : well_container_) { well->updatePerforatedCell(is_cell_perforated_); } // calculate the efficiency factors for each well calculateEfficiencyFactors(reportStepIdx); if (has_polymer_) { const Grid& grid = ebosSimulator_.vanguard().grid(); if (PolymerModule::hasPlyshlog() || GET_PROP_VALUE(TypeTag, EnablePolymerMW) ) { computeRepRadiusPerfLength(grid, local_deferredLogger); } } } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(local_deferredLogger, exception_thrown, "beginTimeStep() failed.", terminal_output_); for (auto& well : well_container_) { well->setVFPProperties(vfp_properties_.get()); well->setGuideRate(guideRate_.get()); } // Close completions due to economical reasons for (auto& well : well_container_) { well->closeCompletions(wellTestState_); } // calculate the well potentials try { std::vector well_potentials; computeWellPotentials(well_potentials, reportStepIdx, local_deferredLogger); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } //compute well guideRates const auto& comm = ebosSimulator_.vanguard().grid().comm(); wellGroupHelpers::updateGuideRatesForWells(schedule(), phase_usage_, reportStepIdx, simulationTime, well_state_, comm, guideRate_.get()); } template void BlackoilWellModel::wellTesting(const int timeStepIdx, const double simulationTime, Opm::DeferredLogger& deferred_logger) { const auto& wtest_config = schedule().wtestConfig(timeStepIdx); if (wtest_config.size() != 0) { // there is a WTEST request // average B factors are required for the convergence checking of well equations // Note: this must be done on all processes, even those with // no wells needing testing, otherwise we will have locking. std::vector< Scalar > B_avg(numComponents(), Scalar() ); computeAverageFormationFactor(B_avg); const auto& wellsForTesting = wellTestState_.updateWells(wtest_config, wells_ecl_, simulationTime); for (const auto& testWell : wellsForTesting) { const std::string& well_name = testWell.first; // this is the well we will test WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger); // some preparation before the well can be used well->init(&phase_usage_, depth_, gravity_, number_of_cells_); const Well& wellEcl = schedule().getWell(well_name, timeStepIdx); double well_efficiency_factor = wellEcl.getEfficiencyFactor(); wellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx), schedule(), timeStepIdx, well_efficiency_factor); well->setWellEfficiencyFactor(well_efficiency_factor); well->setVFPProperties(vfp_properties_.get()); well->setGuideRate(guideRate_.get()); const WellTestConfig::Reason testing_reason = testWell.second; well->wellTesting(ebosSimulator_, B_avg, simulationTime, timeStepIdx, testing_reason, well_state_, wellTestState_, deferred_logger); } } } // called at the end of a report step template void BlackoilWellModel:: endReportStep() { } // called at the end of a report step template const SimulatorReport& BlackoilWellModel:: lastReport() const {return last_report_; } // called at the end of a time step template void BlackoilWellModel:: timeStepSucceeded(const double& simulationTime, const double dt) { // time step is finished and we are not any more at the beginning of an report step report_step_starts_ = false; Opm::DeferredLogger local_deferredLogger; for (const auto& well : well_container_) { if (GET_PROP_VALUE(TypeTag, EnablePolymerMW) && well->isInjector()) { well->updateWaterThroughput(dt, well_state_); } } updateWellTestState(simulationTime, wellTestState_); // update the rate converter with current averages pressures etc in rateConverter_->template defineState(ebosSimulator_); // calculate the well potentials try { std::vector well_potentials; const int reportStepIdx = ebosSimulator_.episodeIndex(); computeWellPotentials(well_potentials, reportStepIdx, local_deferredLogger); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } previous_well_state_ = well_state_; Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger); if (terminal_output_) { global_deferredLogger.logMessages(); } } template template void BlackoilWellModel:: computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { rate = 0; int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx); if (!is_cell_perforated_[elemIdx]) return; for (const auto& well : well_container_) well->addCellRates(rate, elemIdx); } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: well(const std::string& wellName) const { for (const auto& well : well_container_) { if (well->name() == wellName) { return well; } } OPM_THROW(std::invalid_argument, "The well with name " + wellName + " is not in the well Container"); return nullptr; } template void BlackoilWellModel:: initFromRestartFile(const RestartValue& restartValues) { // The restart step value is used to identify wells present at the given // time step. Wells that are added at the same time step as RESTART is initiated // will not be present in a restart file. Use the previous time step to retrieve // wells that have information written to the restart file. const int report_step = std::max(eclState().getInitConfig().getRestartStep() - 1, 0); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); int globalNumWells = 0; // Make wells_ecl_ contain only this partition's non-shut wells. { const auto& defunct_well_names = ebosSimulator_.vanguard().defunctWellNames(); auto is_shut_or_defunct = [&defunct_well_names](const Well& well) { return (well.getStatus() == Well::Status::SHUT) || (defunct_well_names.find(well.name()) != defunct_well_names.end()); }; auto w = schedule().getWells(report_step); globalNumWells = w.size(); w.erase(std::remove_if(w.begin(), w.end(), is_shut_or_defunct), w.end()); wells_ecl_.swap(w); } initializeWellPerfData(); const int nw = wells_ecl_.size(); if (nw > 0) { const auto phaseUsage = phaseUsageFromDeck(eclState()); const size_t numCells = Opm::UgGridHelpers::numCells(grid()); const bool handle_ms_well = (param_.use_multisegment_well_ && anyMSWellOpenLocal()); well_state_.resize(wells_ecl_, schedule(), handle_ms_well, numCells, phaseUsage, well_perf_data_, summaryState, globalNumWells); // Resize for restart step wellsToState(restartValues.wells, phaseUsage, handle_ms_well, well_state_); } // for ecl compatible restart the current controls are not written const auto& ioCfg = eclState().getIOConfig(); const auto ecl_compatible_rst = ioCfg.getEclCompatibleRST(); if (true || ecl_compatible_rst) { // always set the control from the schedule for (int w = 0; w void BlackoilWellModel:: initializeWellPerfData() { const auto& grid = ebosSimulator_.vanguard().grid(); const auto& cartDims = Opm::UgGridHelpers::cartDims(grid); well_perf_data_.resize(wells_ecl_.size()); first_perf_index_.clear(); first_perf_index_.resize(wells_ecl_.size() + 1, 0); int well_index = 0; for (const auto& well : wells_ecl_) { well_perf_data_[well_index].clear(); well_perf_data_[well_index].reserve(well.getConnections().size()); for (const auto& completion : well.getConnections()) { if (completion.state() == Connection::State::OPEN) { const int i = completion.getI(); const int j = completion.getJ(); const int k = completion.getK(); const int cart_grid_indx = i + cartDims[0] * (j + cartDims[1] * k); const int active_index = cartesian_to_compressed_[cart_grid_indx]; if (active_index < 0) { const std::string msg = ("Cell with i,j,k indices " + std::to_string(i) + " " + std::to_string(j) + " " + std::to_string(k) + " not found in grid (well = " + well.name() + ")."); OPM_THROW(std::runtime_error, msg); } else { PerforationData pd; pd.cell_index = active_index; pd.connection_transmissibility_factor = completion.CF() * completion.wellPi(); pd.satnum_id = completion.satTableId(); well_perf_data_[well_index].push_back(pd); } } else { if (completion.state() != Connection::State::SHUT) { OPM_THROW(std::runtime_error, "Completion state: " << Connection::State2String(completion.state()) << " not handled"); } } } first_perf_index_[well_index + 1] = first_perf_index_[well_index] + well_perf_data_[well_index].size(); ++well_index; } } template std::vector::WellInterfacePtr > BlackoilWellModel:: createWellContainer(const int time_step) { std::vector well_container; Opm::DeferredLogger local_deferredLogger; const int nw = numLocalWells(); if (nw > 0) { well_container.reserve(nw); for (int w = 0; w < nw; ++w) { const Well& well_ecl = wells_ecl_[w]; const std::string& well_name = well_ecl.name(); // A new WCON keywords can re-open a well that was closed/shut due to Physical limit if ( wellTestState_.hasWellClosed(well_name)) { // TODO: more checking here, to make sure this standard more specific and complete // maybe there is some WCON keywords will not open the well if (well_state_.effectiveEventsOccurred(w)) { if (wellTestState_.lastTestTime(well_name) == ebosSimulator_.time()) { // The well was shut this timestep, we are most likely retrying // a timestep without the well in question, after it caused // repeated timestep cuts. It should therefore not be opened, // even if it was new or received new targets this report step. well_state_.setEffectiveEventsOccurred(w, false); } else { wellTestState_.openWell(well_name); } } } // TODO: should we do this for all kinds of closing reasons? // something like wellTestState_.hasWell(well_name)? bool wellIsStopped = false; if ( wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::ECONOMIC) || wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::PHYSICAL) ) { if( well_ecl.getAutomaticShutIn() ) { // shut wells are not added to the well container well_state_.shutWell(w); continue; } else { // stopped wells are added to the container but marked as stopped well_state_.thp()[w] = 0.; wellIsStopped = true; } } // Due to ACTIONX the well might have been closed 'behind our back'. const auto well_status = schedule().getWell(well_name, time_step).getStatus(); if (well_status == Well::Status::SHUT) { well_state_.shutWell(w); continue; } // If a production well disallows crossflow and its // (prediction type) rate control is zero, then it is effectively shut. if (!well_ecl.getAllowCrossFlow() && well_ecl.isProducer() && well_ecl.predictionMode()) { const auto& summaryState = ebosSimulator_.vanguard().summaryState(); auto prod_controls = well_ecl.productionControls(summaryState); bool zero_rate_control = false; switch (prod_controls.cmode) { case Well::ProducerCMode::ORAT: zero_rate_control = (prod_controls.oil_rate == 0.0); break; case Well::ProducerCMode::WRAT: zero_rate_control = (prod_controls.water_rate == 0.0); break; case Well::ProducerCMode::GRAT: zero_rate_control = (prod_controls.gas_rate == 0.0); break; case Well::ProducerCMode::LRAT: zero_rate_control = (prod_controls.liquid_rate == 0.0); break; case Well::ProducerCMode::RESV: zero_rate_control = (prod_controls.resv_rate == 0.0); break; default: // Might still have zero rate controls, but is pressure controlled. zero_rate_control = false; } if (zero_rate_control) { // Treat as shut, do not add to container. local_deferredLogger.info(" Well shut due to zero rate control and disallowing crossflow: " + well_ecl.name()); well_state_.shutWell(w); continue; } } if (well_status == Well::Status::STOP) { well_state_.thp()[w] = 0.; wellIsStopped = true; } // Use the pvtRegionIdx from the top cell const int well_cell_top = well_perf_data_[w][0].cell_index; const int pvtreg = pvt_region_idx_[well_cell_top]; if (!well_ecl.isMultiSegment() || !param_.use_multisegment_well_) { well_container.emplace_back(new StandardWell(well_ecl, time_step, param_, *rateConverter_, pvtreg, numComponents(), numPhases(), w, first_perf_index_[w], well_perf_data_[w])); } else { well_container.emplace_back(new MultisegmentWell(well_ecl, time_step, param_, *rateConverter_, pvtreg, numComponents(), numPhases(), w, first_perf_index_[w], well_perf_data_[w])); } if (wellIsStopped) well_container.back()->stopWell(); } } // Collect log messages and print. Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger); if (terminal_output_) { global_deferredLogger.logMessages(); } return well_container; } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: createWellForWellTest(const std::string& well_name, const int report_step, Opm::DeferredLogger& deferred_logger) const { // Finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl_.size(); int index_well_ecl = 0; for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) { if (well_name == wells_ecl_[index_well_ecl].name()) { break; } } // It should be able to find in wells_ecl. if (index_well_ecl == nw_wells_ecl) { OPM_DEFLOG_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ", deferred_logger); } const Well& well_ecl = wells_ecl_[index_well_ecl]; // Use the pvtRegionIdx from the top cell const int well_cell_top = well_perf_data_[index_well_ecl][0].cell_index; const int pvtreg = pvt_region_idx_[well_cell_top]; if (!well_ecl.isMultiSegment() || !param_.use_multisegment_well_) { return WellInterfacePtr(new StandardWell(well_ecl, report_step, param_, *rateConverter_, pvtreg, numComponents(), numPhases(), index_well_ecl, first_perf_index_[index_well_ecl], well_perf_data_[index_well_ecl])); } else { return WellInterfacePtr(new MultisegmentWell(well_ecl, report_step, param_, *rateConverter_, pvtreg, numComponents(), numPhases(), index_well_ecl, first_perf_index_[index_well_ecl], well_perf_data_[index_well_ecl])); } } template void BlackoilWellModel:: assemble(const int iterationIdx, const double dt) { last_report_ = SimulatorReport(); if ( ! wellsActive() ) { return; } Opm::DeferredLogger local_deferredLogger; updatePerforationIntensiveQuantities(); int exception_thrown = 0; try { if (iterationIdx == 0) { calculateExplicitQuantities(local_deferredLogger); prepareTimeStep(local_deferredLogger); } // check the current group control in the beginning of an episode for the first two iterations. The first itertion is needed for changes in group/well controls and closing of wells etc. // a second check is needed for REIN and VREP controls since they depend on results from other wells. // This check can probably be made more sofisticated, but this simple rule seems to work bool checkCurrentGroupControls = (report_step_starts_ && iterationIdx < 2); updateWellControls(local_deferredLogger, /*allow for switching to group controls*/true, checkCurrentGroupControls); // Set the well primary variables based on the value of well solutions initPrimaryVariablesEvaluation(); std::vector< Scalar > B_avg(numComponents(), Scalar() ); computeAverageFormationFactor(B_avg); if (param_.solve_welleq_initially_ && iterationIdx == 0) { // solve the well equations as a pre-processing step last_report_ = solveWellEq(B_avg, dt, local_deferredLogger); if (initial_step_) { // update the explicit quantities to get the initial fluid distribution in the well correct. calculateExplicitQuantities(local_deferredLogger); prepareTimeStep(local_deferredLogger); last_report_ = solveWellEq(B_avg, dt, local_deferredLogger); initial_step_ = false; } // TODO: should we update the explicit related here again, or even prepareTimeStep(). // basically, this is a more updated state from the solveWellEq based on fixed // reservoir state, will tihs be a better place to inialize the explict information? } assembleWellEq(B_avg, dt, local_deferredLogger); } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(local_deferredLogger, exception_thrown, "assemble() failed.", terminal_output_); last_report_.converged = true; } template void BlackoilWellModel:: assembleWellEq(const std::vector& B_avg, const double dt, Opm::DeferredLogger& deferred_logger) { for (auto& well : well_container_) { well->assembleWellEq(ebosSimulator_, B_avg, dt, well_state_, deferred_logger); } } template void BlackoilWellModel:: apply( BVector& r) const { if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(r); } } // Ax = A x - C D^-1 B x template void BlackoilWellModel:: apply(const BVector& x, BVector& Ax) const { // TODO: do we still need localWellsActive()? if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(x, Ax); } } // Ax = Ax - alpha * C D^-1 B x template void BlackoilWellModel:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; // scaleAddRes_ = - C D^-1 B x apply( x, scaleAddRes_ ); // Ax = Ax + alpha * scaleAddRes_ Ax.axpy( alpha, scaleAddRes_ ); } template void BlackoilWellModel:: recoverWellSolutionAndUpdateWellState(const BVector& x) { Opm::DeferredLogger local_deferredLogger; int exception_thrown = 0; try { if (localWellsActive()) { for (auto& well : well_container_) { well->recoverWellSolutionAndUpdateWellState(x, well_state_, local_deferredLogger); } } } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(local_deferredLogger, exception_thrown, "recoverWellSolutionAndUpdateWellState() failed.", terminal_output_); } template bool BlackoilWellModel:: wellsActive() const { return wells_active_; } template void BlackoilWellModel:: setWellsActive(const bool wells_active) { wells_active_ = wells_active; } template bool BlackoilWellModel:: localWellsActive() const { return numLocalWells() > 0; } template void BlackoilWellModel:: initPrimaryVariablesEvaluation() const { for (auto& well : well_container_) { well->initPrimaryVariablesEvaluation(); } } template SimulatorReport BlackoilWellModel:: solveWellEq(const std::vector& B_avg, const double dt, Opm::DeferredLogger& deferred_logger) { WellState well_state0 = well_state_; const int max_iter = param_.max_welleq_iter_; int it = 0; bool converged; int exception_thrown = 0; do { try { assembleWellEq(B_avg, dt, deferred_logger); } catch (std::exception& e) { exception_thrown = 1; } // We need to check on all processes, as getWellConvergence() below communicates on all processes. logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "solveWellEq() failed.", terminal_output_); const auto report = getWellConvergence(B_avg); converged = report.converged(); if (converged) { break; } try { if( localWellsActive() ) { for (auto& well : well_container_) { well->solveEqAndUpdateWellState(well_state_, deferred_logger); } } // updateWellControls uses communication // Therefore the following is executed if there // are active wells anywhere in the global domain. if( wellsActive() ) { updateWellControls(deferred_logger, /*don't switch group controls*/false, /*don't check current group controls*/false); initPrimaryVariablesEvaluation(); } } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "solveWellEq() failed.", terminal_output_); ++it; } while (it < max_iter); try { if (converged) { if (terminal_output_) { deferred_logger.debug("Well equation solution gets converged with " + std::to_string(it) + " iterations"); } } else { if (terminal_output_) { deferred_logger.debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations"); } well_state_ = well_state0; updatePrimaryVariables(deferred_logger); } } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "solveWellEq() failed.", terminal_output_); SimulatorReport report; report.converged = converged; report.total_well_iterations = it; return report; } template ConvergenceReport BlackoilWellModel:: getWellConvergence(const std::vector& B_avg) const { Opm::DeferredLogger local_deferredLogger; // Get global (from all processes) convergence report. ConvergenceReport local_report; for (const auto& well : well_container_) { if (well->isOperable() ) { local_report += well->getWellConvergence(well_state_, B_avg, local_deferredLogger); } } Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger); if (terminal_output_) { global_deferredLogger.logMessages(); } ConvergenceReport report = gatherConvergenceReport(local_report); // Log debug messages for NaN or too large residuals. if (terminal_output_) { for (const auto& f : report.wellFailures()) { if (f.severity() == ConvergenceReport::Severity::NotANumber) { OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } else if (f.severity() == ConvergenceReport::Severity::TooLarge) { OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } } } return report; } template void BlackoilWellModel:: calculateExplicitQuantities(Opm::DeferredLogger& deferred_logger) const { // TODO: checking isOperable() ? for (auto& well : well_container_) { well->calculateExplicitQuantities(ebosSimulator_, well_state_, deferred_logger); } } template void BlackoilWellModel:: updateWellControls(Opm::DeferredLogger& deferred_logger, const bool checkGroupControl, const bool checkCurrentGroupControl) { // Even if there are no wells active locally, we cannot // return as the DeferredLogger uses global communication. // For no well active globally we simply return. if( !wellsActive() ) return ; const int reportStepIdx = ebosSimulator_.episodeIndex(); const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); // update group controls if (checkGroupControl) { checkGroupConstraints(fieldGroup, checkCurrentGroupControl, deferred_logger); } for (const auto& well : well_container_) { well->updateWellControl(ebosSimulator_, well_state_, deferred_logger); } const int nupcol = schedule().getNupcol(reportStepIdx); const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations(); if (iterationIdx < nupcol) { well_state_nupcol_ = well_state_; } // the group target reduction rates needs to be update since wells may have swicthed to/from GRUP control // Currently the group targer reduction does not honor NUPCOL std::vector groupTargetReduction(numPhases(), 0.0); wellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, well_state_nupcol_, well_state_, groupTargetReduction); std::vector groupTargetReductionInj(numPhases(), 0.0); wellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, well_state_nupcol_, well_state_, groupTargetReductionInj); const auto& comm = ebosSimulator_.vanguard().grid().comm(); well_state_.updateGlobalIsGrup(schedule(), reportStepIdx, comm); const double simulationTime = ebosSimulator_.time(); std::vector pot(numPhases(), 0.0); wellGroupHelpers::updateGuideRateForGroups(fieldGroup, schedule(), phase_usage_, reportStepIdx, simulationTime, /*isInjector*/ false, well_state_, comm, guideRate_.get(), pot); std::vector potInj(numPhases(), 0.0); wellGroupHelpers::updateGuideRateForGroups(fieldGroup, schedule(), phase_usage_, reportStepIdx, simulationTime, /*isInjector*/ true, well_state_, comm, guideRate_.get(), potInj); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); wellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState, well_state_nupcol_, well_state_); wellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_, well_state_); wellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_, well_state_); well_state_.communicateGroupRates(comm); // compute wsolvent fraction for REIN wells updateWsolvent(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_); } template void BlackoilWellModel:: updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const { Opm::DeferredLogger local_deferredLogger; for (const auto& well : well_container_) { well->updateWellTestState(well_state_, simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState, local_deferredLogger); } Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger); if (terminal_output_) { global_deferredLogger.logMessages(); } } template void BlackoilWellModel:: computeWellPotentials(std::vector& well_potentials, const int reportStepIdx, Opm::DeferredLogger& deferred_logger) { // number of wells and phases const int nw = numLocalWells(); const int np = numPhases(); well_potentials.resize(nw * np, 0.0); auto well_state_copy = well_state_; // average B factors are required for the convergence checking of well equations // Note: this must be done on all processes, even those with // no wells needing testing, otherwise we will have locking. std::vector< Scalar > B_avg(numComponents(), Scalar() ); computeAverageFormationFactor(B_avg); const Opm::SummaryConfig& summaryConfig = ebosSimulator_.vanguard().summaryConfig(); const bool write_restart_file = ebosSimulator_.vanguard().eclState().getRestartConfig().getWriteRestartFile(reportStepIdx); int exception_thrown = 0; try { for (const auto& well : well_container_) { const bool needed_for_summary = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) || summaryConfig.hasSummaryKey( "WOPI:" + well->name()) || summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) || ((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) || summaryConfig.hasSummaryKey( "WOPP:" + well->name()) || summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer()); const Well& eclWell = well->wellEcl(); bool needPotentialsForGuideRate = eclWell.getGuideRatePhase() == Well::GuideRateTarget::UNDEFINED; if (write_restart_file || needed_for_summary || needPotentialsForGuideRate) { std::vector potentials; well->computeWellPotentials(ebosSimulator_, B_avg, well_state_copy, potentials, deferred_logger); // putting the sucessfully calculated potentials to the well_potentials for (int p = 0; p < np; ++p) { well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]); } } } // end of for (int w = 0; w < nw; ++w) } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "computeWellPotentials() failed.", terminal_output_); // Store it in the well state well_state_.wellPotentials() = well_potentials; } template void BlackoilWellModel:: prepareTimeStep(Opm::DeferredLogger& deferred_logger) { int exception_thrown = 0; try { for (const auto& well : well_container_) { well->checkWellOperability(ebosSimulator_, well_state_, deferred_logger); } // since the controls are all updated, we should update well_state accordingly for (const auto& well : well_container_) { const int w = well->indexOfWell(); if (!well->isOperable() ) continue; if (well_state_.effectiveEventsOccurred(w) ) { well->updateWellStateWithTarget(ebosSimulator_, well_state_, deferred_logger); } // there is no new well control change input within a report step, // so next time step, the well does not consider to have effective events anymore // TODO: if we can know whether this is the first time step within the report step, // we do not need to set it to false // TODO: we should do this at the end of the time step in case we will need it within // this time step somewhere if (well_state_.effectiveEventsOccurred(w) ) { well_state_.setEffectiveEventsOccurred(w, false); } } // end of for (const auto& well : well_container_) updatePrimaryVariables(deferred_logger); } catch (std::exception& e) { exception_thrown = 1; } logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "prepareTimestep() failed.", terminal_output_); } template const typename BlackoilWellModel::WellState& BlackoilWellModel:: wellState() const { return well_state_; } template const typename BlackoilWellModel::WellState& BlackoilWellModel:: wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); } template void BlackoilWellModel:: calculateEfficiencyFactors(const int reportStepIdx) { if ( !localWellsActive() ) { return; } for (auto& well : well_container_) { const Well& wellEcl = well->wellEcl(); double well_efficiency_factor = wellEcl.getEfficiencyFactor(); wellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor); well->setWellEfficiencyFactor(well_efficiency_factor); } } template void BlackoilWellModel:: setupCartesianToCompressed_(const int* global_cell, int number_of_cartesian_cells) { cartesian_to_compressed_.resize(number_of_cartesian_cells, -1); if (global_cell) { for (unsigned i = 0; i < number_of_cells_; ++i) { cartesian_to_compressed_[global_cell[i]] = i; } } else { for (unsigned i = 0; i < number_of_cells_; ++i) { cartesian_to_compressed_[i] = i; } } } template void BlackoilWellModel:: computeRepRadiusPerfLength(const Grid& grid, Opm::DeferredLogger& deferred_logger) { for (const auto& well : well_container_) { well->computeRepRadiusPerfLength(grid, cartesian_to_compressed_, deferred_logger); } } template void BlackoilWellModel:: computeAverageFormationFactor(std::vector& B_avg) const { const auto& grid = ebosSimulator_.vanguard().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(ebosSimulator_); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); auto& B = B_avg[ compIdx ]; B += 1 / fs.invB(phaseIdx).value(); } if (has_solvent_) { auto& B = B_avg[solventSaturationIdx]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for(auto& bval: B_avg) { bval/=global_nc_; } } template void BlackoilWellModel:: updatePrimaryVariables(Opm::DeferredLogger& deferred_logger) { for (const auto& well : well_container_) { well->updatePrimaryVariables(well_state_, deferred_logger); } } template void BlackoilWellModel::extractLegacyCellPvtRegionIndex_() { const auto& grid = ebosSimulator_.vanguard().grid(); const auto& eclProblem = ebosSimulator_.problem(); const unsigned numCells = grid.size(/*codim=*/0); pvt_region_idx_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { pvt_region_idx_[cellIdx] = eclProblem.pvtRegionIndex(cellIdx); } } // The number of components in the model. template int BlackoilWellModel::numComponents() const { if (wellsActive() && numPhases() < 3) { return numPhases(); } int numComp = FluidSystem::numComponents; if (has_solvent_) { numComp ++; } return numComp; } template int BlackoilWellModel:: numLocalWells() const { return wells_ecl_.size(); } template int BlackoilWellModel::numPhases() const { return phase_usage_.num_phases; } template void BlackoilWellModel::extractLegacyDepth_() { const auto& grid = ebosSimulator_.vanguard().grid(); const unsigned numCells = grid.size(/*codim=*/0); depth_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { depth_[cellIdx] = Opm::UgGridHelpers::cellCenterDepth( grid, cellIdx ); } } template void BlackoilWellModel:: updatePerforationIntensiveQuantities() { ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator_.gridView(); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); int elemIdx = elemCtx.globalSpaceIndex(0, 0); if (!is_cell_perforated_[elemIdx]) { continue; } elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); } } // convert well data from opm-common to well state from opm-core template void BlackoilWellModel:: wellsToState( const data::Wells& wells, const PhaseUsage& phases, const bool handle_ms_well, WellStateFullyImplicitBlackoil& state) const { using rt = data::Rates::opt; const auto np = phases.num_phases; std::vector< rt > phs( np ); if( phases.phase_used[BlackoilPhases::Aqua] ) { phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat; } if( phases.phase_used[BlackoilPhases::Liquid] ) { phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil; } if( phases.phase_used[BlackoilPhases::Vapour] ) { phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas; } for( const auto& wm : state.wellMap() ) { const auto well_index = wm.second[ 0 ]; const auto& well = wells.at( wm.first ); state.bhp()[ well_index ] = well.bhp; state.temperature()[ well_index ] = well.temperature; //state.currentInjectionControls()[ well_index ] = static_cast(well.injectionControl); //state.currentProductionControls()[ well_index ] = static_cast(well.productionControl); const auto wellrate_index = well_index * np; for( size_t i = 0; i < phs.size(); ++i ) { assert( well.rates.has( phs[ i ] ) ); state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] ); } const auto perforation_pressure = []( const data::Connection& comp ) { return comp.pressure; }; const auto perforation_reservoir_rate = []( const data::Connection& comp ) { return comp.reservoir_rate; }; std::transform( well.connections.begin(), well.connections.end(), state.perfPress().begin() + wm.second[ 1 ], perforation_pressure ); std::transform( well.connections.begin(), well.connections.end(), state.perfRates().begin() + wm.second[ 1 ], perforation_reservoir_rate ); int local_comp_index = 0; for (const data::Connection& comp : well.connections) { const int global_comp_index = wm.second[1] + local_comp_index; for (int phase_index = 0; phase_index < np; ++phase_index) { state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]); } ++local_comp_index; } if (handle_ms_well && !well.segments.empty()) { // we need the well_ecl_ information const std::string& well_name = wm.first; const Well& well_ecl = getWellEcl(well_name); const WellSegments& segment_set = well_ecl.getSegments(); const int top_segment_index = state.topSegmentIndex(well_index); const auto& segments = well.segments; // \Note: eventually we need to hanlde the situations that some segments are shut assert(0u + segment_set.size() == segments.size()); for (const auto& segment : segments) { const int segment_index = segment_set.segmentNumberToIndex(segment.first); // recovering segment rates and pressure from the restart values state.segPress()[top_segment_index + segment_index] = segment.second.pressure; const auto& segment_rates = segment.second.rates; for (int p = 0; p < np; ++p) { state.segRates()[(top_segment_index + segment_index) * np + p] = segment_rates.get(phs[p]); } } } } } template bool BlackoilWellModel:: anyMSWellOpenLocal() const { for (const auto& well : wells_ecl_) { if (well.isMultiSegment()) { return true; } } return false; } template const Well& BlackoilWellModel:: getWellEcl(const std::string& well_name) const { // finding the iterator of the well in wells_ecl auto well_ecl = std::find_if(wells_ecl_.begin(), wells_ecl_.end(), [&well_name](const Well& elem)->bool { return elem.name() == well_name; }); assert(well_ecl != wells_ecl_.end()); return *well_ecl; } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: getWell(const std::string& well_name) const { // finding the iterator of the well in wells_ecl auto well = std::find_if(well_container_.begin(), well_container_.end(), [&well_name](const WellInterfacePtr& elem)->bool { return elem->name() == well_name; }); assert(well != well_container_.end()); return *well; } template void BlackoilWellModel:: checkGroupConstraints(const Group& group, const bool checkCurrentControl, Opm::DeferredLogger& deferred_logger) { const int reportStepIdx = ebosSimulator_.episodeIndex(); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); const auto& comm = ebosSimulator_.vanguard().grid().comm(); auto& well_state = well_state_; if (group.isInjectionGroup()) { const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS}; for (Phase phase : all) { if (!group.hasInjectionControl(phase)) { continue; } int phasePos; if (phase == Phase::GAS && phase_usage_.phase_used[BlackoilPhases::Vapour] ) phasePos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; else if (phase == Phase::OIL && phase_usage_.phase_used[BlackoilPhases::Liquid]) phasePos = phase_usage_.phase_pos[BlackoilPhases::Liquid]; else if (phase == Phase::WATER && phase_usage_.phase_used[BlackoilPhases::Aqua] ) phasePos = phase_usage_.phase_pos[BlackoilPhases::Aqua]; else continue; const auto& controls = group.injectionControls(phase, summaryState); const Group::InjectionCMode& currentControl = well_state.currentInjectionGroupControl(phase, group.name()); if (controls.has_control(Group::InjectionCMode::RATE)) { if (checkCurrentControl || currentControl != Group::InjectionCMode::RATE) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.surface_max_rate < current_rate) { actionOnBrokenConstraints(group, Group::InjectionCMode::RATE, phase, reportStepIdx, deferred_logger); } } } if (controls.has_control(Group::InjectionCMode::RESV)) { if (checkCurrentControl || currentControl != Group::InjectionCMode::RESV) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.resv_max_rate < current_rate) { actionOnBrokenConstraints(group, Group::InjectionCMode::RESV, phase, reportStepIdx, deferred_logger); } } } if (controls.has_control(Group::InjectionCMode::REIN)) { if (checkCurrentControl || currentControl != Group::InjectionCMode::REIN) { double production_Rate = 0.0; const Group& groupRein = schedule().getGroup(controls.reinj_group, reportStepIdx); production_Rate += wellGroupHelpers::sumWellRates(groupRein, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/false); // sum over all nodes production_Rate = comm.sum(production_Rate); double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.target_reinj_fraction*production_Rate < current_rate) { actionOnBrokenConstraints(group, Group::InjectionCMode::REIN, phase,reportStepIdx, deferred_logger); } } } if (controls.has_control(Group::InjectionCMode::VREP)) { if (checkCurrentControl || currentControl != Group::InjectionCMode::VREP) { double voidage_rate = 0.0; const Group& groupVoidage = schedule().getGroup(controls.voidage_group, reportStepIdx); voidage_rate += wellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false); voidage_rate += wellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false); voidage_rate += wellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false); // sum over all nodes voidage_rate = comm.sum(voidage_rate); double total_rate = 0.0; total_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true); total_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true); total_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true); // sum over all nodes total_rate = comm.sum(total_rate); if (controls.target_void_fraction*voidage_rate < total_rate) { actionOnBrokenConstraints(group, Group::InjectionCMode::VREP, phase, reportStepIdx, deferred_logger); } } } // Handle GCONSALE if (schedule().gConSale(reportStepIdx).has(group.name())) { if (controls.phase != Phase::GAS) OPM_THROW(std::runtime_error, "Group " + group.name() + " has GCONSALE control but is not a GAS group" ); const auto& gconsale = schedule().gConSale(reportStepIdx).get(group.name(), summaryState); double sales_rate = 0.0; int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; sales_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false); sales_rate -= wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true); // sum over all nodes sales_rate = comm.sum(sales_rate); // add import rate and substract consumption rate for group for gas if (schedule().gConSump(reportStepIdx).has(group.name())) { const auto& gconsump = schedule().gConSump(reportStepIdx).get(group.name(), summaryState); if (phase_usage_.phase_used[BlackoilPhases::Vapour]) { sales_rate += gconsump.import_rate; sales_rate -= gconsump.consumption_rate; } } if (sales_rate > gconsale.max_sales_rate) { OPM_THROW(std::runtime_error, "Group " + group.name() + " has sale rate more then the maximum permitted value. Not implemented in Flow" ); } if (sales_rate < gconsale.min_sales_rate) { OPM_THROW(std::runtime_error, "Group " + group.name() + " has sale rate less then minimum permitted value. Not implemented in Flow" ); } if (gconsale.sales_target < 0.0) { OPM_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" ); } } } } if (group.isProductionGroup()) { const auto controls = group.productionControls(summaryState); const Group::ProductionCMode& currentControl = well_state.currentProductionGroupControl(group.name()); if (group.has_control(Group::ProductionCMode::ORAT)) { if (checkCurrentControl || currentControl != Group::ProductionCMode::ORAT) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.oil_target < current_rate ) { actionOnBrokenConstraints(group, controls.exceed_action, Group::ProductionCMode::ORAT, reportStepIdx, deferred_logger); } } } if (group.has_control(Group::ProductionCMode::WRAT)) { if (checkCurrentControl || currentControl != Group::ProductionCMode::WRAT) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.water_target < current_rate ) { actionOnBrokenConstraints(group, controls.exceed_action, Group::ProductionCMode::WRAT, reportStepIdx, deferred_logger); } } } if (group.has_control(Group::ProductionCMode::GRAT)) { if (checkCurrentControl || currentControl != Group::ProductionCMode::GRAT) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.gas_target < current_rate ) { actionOnBrokenConstraints(group, controls.exceed_action, Group::ProductionCMode::GRAT, reportStepIdx, deferred_logger); } } } if (group.has_control(Group::ProductionCMode::LRAT)) { if (checkCurrentControl || currentControl != Group::ProductionCMode::LRAT) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false); current_rate += wellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.liquid_target < current_rate ) { actionOnBrokenConstraints(group, controls.exceed_action, Group::ProductionCMode::LRAT, reportStepIdx, deferred_logger); } } } if (group.has_control(Group::ProductionCMode::CRAT)) { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "CRAT control for production groups not implemented" , deferred_logger); } if (group.has_control(Group::ProductionCMode::RESV)) { if (checkCurrentControl || currentControl != Group::ProductionCMode::RESV) { double current_rate = 0.0; current_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true); current_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true); current_rate += wellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true); // sum over all nodes current_rate = comm.sum(current_rate); if (controls.resv_target < current_rate ) { actionOnBrokenConstraints(group, controls.exceed_action, Group::ProductionCMode::RESV, reportStepIdx, deferred_logger); } } } if (group.has_control(Group::ProductionCMode::PRBL)) { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "PRBL control for production groups not implemented", deferred_logger); } } else { //neither production or injecting group FIELD? } // call recursively down the group hiearchy for (const std::string& groupName : group.groups()) { checkGroupConstraints( schedule().getGroup(groupName, reportStepIdx), checkCurrentControl, deferred_logger); } } template void BlackoilWellModel:: actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, const int reportStepIdx, Opm::DeferredLogger& deferred_logger) { auto& well_state = well_state_; const Group::ProductionCMode& oldControl = well_state.currentProductionGroupControl(group.name()); std::ostringstream ss; switch(exceed_action) { case Group::ExceedAction::NONE: { if (oldControl != newControl && oldControl != Group::ProductionCMode::NONE) { ss << "Group production exceed limit is NONE for group " + group.name() + ". Nothing happens"; } break; } case Group::ExceedAction::CON: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON not implemented", deferred_logger); break; } case Group::ExceedAction::CON_PLUS: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON_PLUS not implemented", deferred_logger); break; } case Group::ExceedAction::WELL: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit WELL not implemented", deferred_logger); break; } case Group::ExceedAction::PLUG: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit PLUG not implemented", deferred_logger); break; } case Group::ExceedAction::RATE: { if (oldControl != newControl) { well_state.setCurrentProductionGroupControl(group.name(), newControl); ss << "Switching control mode for group "<< group.name() << " to " << Group::ProductionCMode2String(newControl); } // Pass a dummy phase for producer groups. The topUpPhase is only relevant for injector groups const Phase topUpPhase = Phase::WATER; wellGroupHelpers::setGroupControl(group, schedule(), topUpPhase, reportStepIdx, false, well_state, ss); break; } default: throw("Invalid procedure for maximum rate limit selected for group" + group.name()); } auto cc = Dune::MPIHelper::getCollectiveCommunication(); if (cc.size() > 1) { ss << " on rank " << cc.rank(); } if (!ss.str().empty()) deferred_logger.info(ss.str()); } template void BlackoilWellModel:: actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& controlPhase, const int reportStepIdx, Opm::DeferredLogger& deferred_logger) { auto& well_state = well_state_; const Group::InjectionCMode& oldControl = well_state.currentInjectionGroupControl(controlPhase, group.name()); std::ostringstream ss; if (oldControl != newControl) { const std::string from = Group::InjectionCMode2String(oldControl); ss << "Group " << group.name() << " exceeding " << from << " limit \n"; ss << "Switching control mode for group "<< group.name() << " to " << Group::InjectionCMode2String(newControl); auto cc = Dune::MPIHelper::getCollectiveCommunication(); if (cc.size() > 1) { ss << " on rank " << cc.rank(); } well_state.setCurrentInjectionGroupControl(controlPhase, group.name(), newControl); } wellGroupHelpers::setGroupControl(group, schedule(), controlPhase, reportStepIdx, /*isInjector*/true, well_state, ss); if (!ss.str().empty()) deferred_logger.info(ss.str()); } template void BlackoilWellModel:: updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState) { for (const std::string& groupName : group.groups()) { const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx); updateWsolvent(groupTmp, schedule, reportStepIdx, wellState); } if (group.isProductionGroup()) return; const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(Phase::GAS, group.name()); if( currentGroupControl == Group::InjectionCMode::REIN ) { int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; double gasProductionRate = wellGroupHelpers::sumWellRates(group, schedule, wellState, reportStepIdx, gasPos, /*isInjector*/false); double solventProductionRate = wellGroupHelpers::sumSolventRates(group, schedule, wellState, reportStepIdx, /*isInjector*/false); const auto& comm = ebosSimulator_.vanguard().grid().comm(); solventProductionRate = comm.sum(solventProductionRate); gasProductionRate = comm.sum(gasProductionRate); double wsolvent = 0.0; if (std::abs(gasProductionRate) > 1e-6) wsolvent = solventProductionRate / gasProductionRate; setWsolvent(group, schedule, reportStepIdx, wsolvent); } } template void BlackoilWellModel:: setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent) { for (const std::string& groupName : group.groups()) { const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx); setWsolvent(groupTmp, schedule, reportStepIdx, wsolvent); } for (const std::string& wellName : group.wells()) { const auto& wellTmp = schedule.getWell(wellName, reportStepIdx); if (wellTmp.getStatus() == Well::Status::SHUT) continue; auto well = getWell(wellName); well->setWsolvent(wsolvent); } } } // namespace Opm