/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template WellAssemble:: WellAssemble(const WellInterfaceFluidSystem& well) : well_(well) {} template template void WellAssemble:: assembleControlEqProd(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::ProductionControls& controls, const EvalWell& bhp, const std::vector& rates, // Always 3 canonical rates. const std::function& bhp_from_thp, EvalWell& control_eq, DeferredLogger& deferred_logger) const { const auto current = well_state.well(well_.indexOfWell()).production_cmode; const auto& pu = well_.phaseUsage(); const double efficiencyFactor = well_.wellEcl().getEfficiencyFactor(); switch (current) { case Well::ProducerCMode::ORAT: { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); const EvalWell rate = -rates[BlackoilPhases::Liquid]; control_eq = rate - controls.oil_rate; break; } case Well::ProducerCMode::WRAT: { assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); const EvalWell rate = -rates[BlackoilPhases::Aqua]; control_eq = rate - controls.water_rate; break; } case Well::ProducerCMode::GRAT: { assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); const EvalWell rate = -rates[BlackoilPhases::Vapour]; control_eq = rate - controls.gas_rate; break; } case Well::ProducerCMode::LRAT: { assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); EvalWell rate = -rates[BlackoilPhases::Aqua] - rates[BlackoilPhases::Liquid]; control_eq = rate - controls.liquid_rate; break; } case Well::ProducerCMode::CRAT: { OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << well_.name(), deferred_logger); } case Well::ProducerCMode::RESV: { auto total_rate = rates[0]; // To get the correct type only. total_rate = 0.0; std::vector convert_coeff(well_.numPhases(), 1.0); well_.rateConverter().calcCoeff(/*fipreg*/ 0, well_.pvtRegionIdx(), convert_coeff); for (int phase = 0; phase < 3; ++phase) { if (pu.phase_used[phase]) { const int pos = pu.phase_pos[phase]; total_rate -= rates[phase] * convert_coeff[pos]; // Note different indices. } } if (controls.prediction_mode) { control_eq = total_rate - controls.resv_rate; } else { std::vector hrates(well_.numPhases(), 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { hrates[pu.phase_pos[Water]] = controls.water_rate; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { hrates[pu.phase_pos[Oil]] = controls.oil_rate; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { hrates[pu.phase_pos[Gas]] = controls.gas_rate; } std::vector hrates_resv(well_.numPhases(), 0.); well_.rateConverter().calcReservoirVoidageRates(/*fipreg*/ 0, well_.pvtRegionIdx(), hrates, hrates_resv); double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0); control_eq = total_rate - target; } break; } case Well::ProducerCMode::BHP: { control_eq = bhp - controls.bhp_limit; break; } case Well::ProducerCMode::THP: { control_eq = bhp - bhp_from_thp(); break; } case Well::ProducerCMode::GRUP: { assert(well_.wellEcl().isAvailableForGroupControl()); const auto& group = schedule.getGroup(well_.wellEcl().groupName(), well_.currentStep()); // Annoying thing: the rates passed to this function are // always of size 3 and in canonical (for PhaseUsage) // order. This is what is needed for VFP calculations if // they are required (THP controlled well). But for the // group production control things we must pass only the // active phases' rates. std::vector active_rates(pu.num_phases); for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) { if (pu.phase_used[canonical_phase]) { active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase]; } } auto rCoeff = [this](const RegionId id, const int region, std::vector& coeff) { well_.rateConverter().calcCoeff(id, region, coeff); }; WellGroupControls(well_).getGroupProductionControl(group, well_state, group_state, schedule, summaryState, bhp, active_rates, rCoeff, efficiencyFactor, control_eq); break; } case Well::ProducerCMode::CMODE_UNDEFINED: { OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + well_.name(), deferred_logger); } case Well::ProducerCMode::NONE: { OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + well_.name(), deferred_logger); } } } template template void WellAssemble:: assembleControlEqInj(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::InjectionControls& controls, const EvalWell& bhp, const EvalWell& injection_rate, const std::function& bhp_from_thp, EvalWell& control_eq, DeferredLogger& deferred_logger) const { auto current = well_state.well(well_.indexOfWell()).injection_cmode; const InjectorType injectorType = controls.injector_type; const auto& pu = well_.phaseUsage(); const double efficiencyFactor = well_.wellEcl().getEfficiencyFactor(); switch (current) { case Well::InjectorCMode::RATE: { control_eq = injection_rate - controls.surface_rate; break; } case Well::InjectorCMode::RESV: { std::vector convert_coeff(well_.numPhases(), 1.0); well_.rateConverter().calcInjCoeff(/*fipreg*/ 0, well_.pvtRegionIdx(), convert_coeff); double coeff = 1.0; switch (injectorType) { case InjectorType::WATER: { coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]]; break; } case InjectorType::OIL: { coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]]; break; } case InjectorType::GAS: { coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]]; break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + well_.wellEcl().name()); } control_eq = coeff * injection_rate - controls.reservoir_rate; break; } case Well::InjectorCMode::THP: { control_eq = bhp - bhp_from_thp(); break; } case Well::InjectorCMode::BHP: { control_eq = bhp - controls.bhp_limit; break; } case Well::InjectorCMode::GRUP: { assert(well_.wellEcl().isAvailableForGroupControl()); const auto& group = schedule.getGroup(well_.wellEcl().groupName(), well_.currentStep()); auto rCoeff = [this](const RegionId id, const int region, std::vector& coeff) { well_.rateConverter().calcInjCoeff(id, region, coeff); }; WellGroupControls(well_).getGroupInjectionControl(group, well_state, group_state, schedule, summaryState, injectorType, bhp, injection_rate, rCoeff, efficiencyFactor, control_eq, deferred_logger); break; } case Well::InjectorCMode::CMODE_UNDEFINED: { OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + well_.name(), deferred_logger); } } } #define INSTANCE_METHODS(A,...) \ template void WellAssemble:: \ assembleControlEqProd<__VA_ARGS__>(const WellState&, \ const GroupState&, \ const Schedule&, \ const SummaryState&, \ const Well::ProductionControls&, \ const __VA_ARGS__&, \ const std::vector<__VA_ARGS__>&, \ const std::function<__VA_ARGS__()>&, \ __VA_ARGS__&, \ DeferredLogger&) const; \ template void WellAssemble:: \ assembleControlEqInj<__VA_ARGS__>(const WellState&, \ const GroupState&, \ const Schedule&, \ const SummaryState&, \ const Well::InjectionControls&, \ const __VA_ARGS__&, \ const __VA_ARGS__&, \ const std::function<__VA_ARGS__()>&, \ __VA_ARGS__&, \ DeferredLogger&) const; using FluidSys = BlackOilFluidSystem; template class WellAssemble; INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) } // namespace Opm