/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "AutoDiffBlock.hpp" #include #include #include #include #include #include #include #include #include /* Equations for incompressible two-phase flow. Using s and p as variables: PV (s_i - s0_i) / dt + sum_{j \in U(i)} f(s_j) v_{ij} + sum_{j in D(i) f(s_i) v_{ij} = qw_i where v_{ij} = totmob_ij T_ij (p_i - p_j) Pressure equation: sum_{j \in N(i)} totmob_ij T_ij (p_i - p_j) = q_i */ /// Contains vectors and sparse matrices that represent subsets or /// operations on (AD or regular) vectors of data. struct HelperOps { typedef AutoDiff::ForwardBlock::M M; typedef AutoDiff::ForwardBlock::V V; /// A list of internal faces. Eigen::Array internal_faces; /// Extract for each face the difference of its adjacent cells'values. M ngrad; /// Extract for each face the average of its adjacent cells' values. M caver; /// Extract for each cell the sum of its adjacent faces' (signed) values. M div; /// Constructs all helper vectors and matrices. HelperOps(const UnstructuredGrid& grid) { const int nc = grid.number_of_cells; const int nf = grid.number_of_faces; // Define some neighbourhood-derived helper arrays. typedef Eigen::Array OneColInt; typedef Eigen::Array OneColBool; typedef Eigen::Array TwoColInt; typedef Eigen::Array TwoColBool; TwoColInt nb = Eigen::Map(grid.face_cells, nf, 2); // std::cout << "nb = \n" << nb << std::endl; TwoColBool nbib = nb >= 0; OneColBool ifaces = nbib.rowwise().all(); const int num_internal = ifaces.cast().sum(); // std::cout << num_internal << " internal faces." << std::endl; TwoColInt nbi(num_internal, 2); internal_faces.resize(num_internal); int fi = 0; for (int f = 0; f < nf; ++f) { if (ifaces[f]) { internal_faces[fi] = f; nbi.row(fi) = nb.row(f); ++fi; } } // std::cout << "nbi = \n" << nbi << std::endl; // Create matrices. ngrad.resize(num_internal, nc); caver.resize(num_internal, nc); typedef Eigen::Triplet Tri; std::vector ngrad_tri; std::vector caver_tri; ngrad_tri.reserve(2*num_internal); caver_tri.reserve(2*num_internal); for (int i = 0; i < num_internal; ++i) { ngrad_tri.emplace_back(i, nbi(i,0), 1.0); ngrad_tri.emplace_back(i, nbi(i,1), -1.0); caver_tri.emplace_back(i, nbi(i,0), 0.5); caver_tri.emplace_back(i, nbi(i,1), 0.5); } ngrad.setFromTriplets(ngrad_tri.begin(), ngrad_tri.end()); caver.setFromTriplets(caver_tri.begin(), caver_tri.end()); div = ngrad.transpose(); } }; /// Returns fw(sw). template ADB fluxFunc(const Opm::IncompPropertiesInterface& props, const std::vector& cells, const typename ADB::V& sw) { typedef Eigen::Array TwoCol; typedef Eigen::Array FourCol; typedef typename ADB::V V; typedef typename ADB::M M; const int nc = props.numCells(); TwoCol s(nc, 2); s.leftCols<1>() = sw; s.rightCols<1>() = 1.0 - s.leftCols<1>(); TwoCol kr(nc, 2); FourCol dkr(nc, 4); props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data()); V krw = kr.leftCols<1>(); V kro = kr.rightCols<1>(); V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix. V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix. M krwjac(nc,nc); M krojac(nc,nc); auto sizes = Eigen::ArrayXi::Ones(nc); krwjac.reserve(sizes); krojac.reserve(sizes); for (int c = 0; c < nc; ++c) { krwjac.insert(c,c) = dkrw(c); krojac.insert(c,c) = dkro(c); } const double* mu = props.viscosity(); std::vector dmw = { krwjac/mu[0] }; std::vector dmo = { krojac/mu[1] }; ADB mw_ad = ADB::function(krw/mu[0], dmw); ADB mo_ad = ADB::function(kro/mu[1], dmo); ADB fw = mw_ad / (mw_ad + mo_ad); // std::cout << mw_ad << mo_ad << (mw_ad + mo_ad) << fw; return fw; } int main() { typedef AutoDiff::ForwardBlock ADB; typedef ADB::V V; typedef ADB::M M; Opm::time::StopWatch clock; clock.start(); Opm::GridManager gm(3,3);//(50, 50, 10); const UnstructuredGrid& grid = *gm.c_grid(); using namespace Opm::unit; using namespace Opm::prefix; // Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear, // { 1000.0, 800.0 }, // { 1.0*centi*Poise, 5.0*centi*Poise }, // 0.2, 100*milli*darcy, // grid.dimensions, grid.number_of_cells); // Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear, // { 1000.0, 1000.0 }, // { 1.0, 1.0 }, // 1.0, 1.0, // grid.dimensions, grid.number_of_cells); Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear, { 1000.0, 1000.0 }, { 1.0, 30.0 }, 1.0, 1.0, grid.dimensions, grid.number_of_cells); std::vector htrans(grid.cell_facepos[grid.number_of_cells]); tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data()); // std::vector trans(grid.number_of_faces); V trans_all(grid.number_of_faces); tpfa_trans_compute((UnstructuredGrid*)&grid, htrans.data(), trans_all.data()); const int nc = grid.number_of_cells; std::vector allcells(nc); for (int i = 0; i < nc; ++i) { allcells[i] = i; } std::cerr << "Opm core " << clock.secsSinceLast() << std::endl; // Define neighbourhood-derived operator matrices. HelperOps ops(grid); const int num_internal = ops.internal_faces.size(); V transi(num_internal); for (int fi = 0; fi < num_internal; ++fi) { transi[fi] = trans_all[ops.internal_faces[fi]]; } std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl; typedef AutoDiff::ForwardBlock ADB; typedef ADB::V V; // q V q(nc); q.setZero(); q[0] = 1.0; q[nc-1] = -1.0; // s0 - this is explicit now typedef Eigen::Array TwoCol; TwoCol s0(nc, 2); s0.leftCols<1>().setZero(); s0.rightCols<1>().setOnes(); // totmob - explicit as well TwoCol kr(nc, 2); props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0); V krw = kr.leftCols<1>(); V kro = kr.rightCols<1>(); const double* mu = props.viscosity(); V totmob = krw/mu[0] + kro/mu[1]; V totmobf = (ops.caver*totmob.matrix()).array(); // Mobility-weighted transmissibilities per internal face. // Still explicit, and no upwinding! V mobtransf = totmobf*transi; std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl; // Initial pressure. V p0(nc,1); p0.fill(200*Opm::unit::barsa); // First actual AD usage: defining pressure variable. std::vector block_pattern = { nc }; // Could actually write { nc } instead of block_pattern below, // but we prefer a named variable since we will repeat it. ADB p = ADB::variable(0, p0, block_pattern); ADB ngradp = ops.ngrad*p; // We want flux = totmob*trans*(p_i - p_j) for the ij-face. // We only need to multiply mobtransf and pdiff_face, // but currently multiplication with constants is not in, // so we define an AD constant to multiply with. ADB mobtransf_ad = ADB::constant(mobtransf, block_pattern); ADB flux = mobtransf_ad*ngradp; ADB residual = ops.div*flux - ADB::constant(q, block_pattern); std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl; // It's the residual we want to be zero. We know it's linear in p, // so we just need a single linear solve. Since we have formulated // ourselves with a residual and jacobian we do this with a single // Newton step (hopefully easy to extend later): // p = p0 - J(p0) \ R(p0) // Where R(p0) and J(p0) are contained in residual.value() and // residual.derived()[0]. Eigen::UmfPackLU solver; M matr = residual.derivative()[0]; matr.coeffRef(0,0) *= 2.0; matr.makeCompressed(); solver.compute(matr); if (solver.info() != Eigen::Success) { std::cerr << "Pressure/flow Jacobian decomposition error\n"; return EXIT_FAILURE; } Eigen::VectorXd x = solver.solve(residual.value().matrix()); if (solver.info() != Eigen::Success) { std::cerr << "Pressure/solve failure\n"; return EXIT_FAILURE; } V p1 = p0 - x.array(); std::cerr << "Solve " << clock.secsSinceLast() << std::endl; // std::cout << p1 << std::endl; // ------ Transport solve ------ // Now we'll try to do a transport step as well. // Residual formula is // R_w = s_w - s_w^0 + dt/pv * (div v_w) // where // v_w = f_w v // and f_w is (for now) based on averaged mobilities, not upwind. double res_norm = 1e100; V s1 = /*s0.leftCols<1>()*/0.5*V::Ones(nc,1); // Initial guess. do { const std::vector& bp = block_pattern; ADB s = ADB::variable(0, s1, bp); const double dt = 0.0005; V pv = Eigen::Map(props.porosity(), nc, 1) * Eigen::Map(grid.cell_volumes, nc, 1); V dtpv = dt/pv; // std::cout << dtpv; V ngradp1 = ops.ngrad*p1.matrix(); // std::cout << ngradp1 << std::endl; ADB fw_cell = fluxFunc(props, allcells, s.value()); // std::cout << fw_cell; ADB fw_face = ops.caver*fw_cell; // std::cout << fw_face; ADB flux1 = fw_face*ADB::constant(ngradp1, bp); // std::cout << flux1; V qneg = dtpv*q; V qpos = dtpv*q; // Cheating a bit... qneg[0] = 0.0; qpos[nc-1] = 0.0; ADB qtr_ad = ADB::constant(qpos, bp) + fw_cell*ADB::constant(qneg, bp); ADB transport_residual = s - ADB::constant(s0.leftCols<1>(), bp) + ADB::constant(dtpv, bp)*(ops.div*flux1) - qtr_ad; res_norm = transport_residual.value().matrix().norm(); std::cout << "res_norm = " << res_norm << std::endl; matr = transport_residual.derivative()[0]; matr.makeCompressed(); // std::cout << transport_residual; solver.compute(matr); if (solver.info() != Eigen::Success) { std::cerr << "Transport Jacobian decomposition error\n"; return EXIT_FAILURE; } x = solver.solve(transport_residual.value().matrix()); if (solver.info() != Eigen::Success) { std::cerr << "Transport solve failure\n"; return EXIT_FAILURE; } // std::cout << x << std::endl; s1 = s.value() - x.array(); std::cerr << "Solve for s " << clock.secsSinceLast() << std::endl; for (int c = 0; c < nc; ++c) { s1[c] = std::min(1.0, std::max(0.0, s1[c])); } std::cout << "s1 = \n" << s1 << std::endl; } while (res_norm > 1e-7); }