/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_WELLSTATE_HEADER_INCLUDED #define OPM_WELLSTATE_HEADER_INCLUDED #include #include namespace Opm { /// The state of a set of wells. class WellState { public: /// Allocate and initialize if wells is non-null. /// Also tries to give useful initial values to the bhp() and /// wellRates() fields, depending on controls. The /// perfRates() field is filled with zero, and perfPress() /// with -1e100. template void init(const Wells* wells, const State& state) { if (wells) { const int nw = wells->number_of_wells; const int np = wells->number_of_phases; bhp_.resize(nw); wellrates_.resize(nw * np, 0.0); for (int w = 0; w < nw; ++w) { const WellControls* ctrl = wells->ctrls[w]; // Initialize bhp to be target pressure if // bhp-controlled well, otherwise set to a little // above or below (depending on if the well is an // injector or producer) pressure in first perforation // cell. if ((ctrl->current < 0) || // SHUT (ctrl->type[ctrl->current] != BHP)) { const int first_cell = wells->well_cells[wells->well_connpos[w]]; const double safety_factor = (wells->type[w] == INJECTOR) ? 1.01 : 0.99; bhp_[w] = safety_factor*state.pressure()[first_cell]; } else { bhp_[w] = ctrl->target[ctrl->current]; } // Initialize well rates to match controls if type is SURFACE_RATE if ((ctrl->current >= 0) && // open well (ctrl->type[ctrl->current] == SURFACE_RATE)) { const double rate_target = ctrl->target[ctrl->current]; for (int p = 0; p < np; ++p) { const double phase_distr = ctrl->distr[np * ctrl->current + p]; wellrates_[np*w + p] = rate_target * phase_distr; } } } // The perforation rates and perforation pressures are // not expected to be consistent with bhp_ and wellrates_ // after init(). perfrates_.resize(wells->well_connpos[nw], 0.0); perfpress_.resize(wells->well_connpos[nw], -1e100); } } /// One bhp pressure per well. std::vector& bhp() { return bhp_; } const std::vector& bhp() const { return bhp_; } /// One rate per well and phase. std::vector& wellRates() { return wellrates_; } const std::vector& wellRates() const { return wellrates_; } /// One rate per well connection. std::vector& perfRates() { return perfrates_; } const std::vector& perfRates() const { return perfrates_; } /// One pressure per well connection. std::vector& perfPress() { return perfpress_; } const std::vector& perfPress() const { return perfpress_; } private: std::vector bhp_; std::vector wellrates_; std::vector perfrates_; std::vector perfpress_; }; } // namespace Opm #endif // OPM_WELLSTATE_HEADER_INCLUDED