/* Copyright 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_NEWTONSOLVER_HEADER_INCLUDED #define OPM_NEWTONSOLVER_HEADER_INCLUDED #include #include #include namespace Opm { /// A Newton solver class suitable for general fully-implicit models. template class NewtonSolver { public: // --------- Types and enums --------- typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; // The Newton relaxation scheme type enum RelaxType { DAMPEN, SOR }; // Solver parameters controlling nonlinear Newton process. struct SolverParameters { enum RelaxType relax_type_; double relax_max_; double relax_increment_; double relax_rel_tol_; int max_iter_; // max newton iterations int min_iter_; // min newton iterations explicit SolverParameters( const parameter::ParameterGroup& param ); SolverParameters(); void reset(); }; // Forwarding types from PhysicalModel. typedef typename PhysicalModel::ReservoirState ReservoirState; typedef typename PhysicalModel::WellState WellState; // --------- Public methods --------- /// Construct solver for a given model. /// /// The model is a std::unique_ptr because the object to which model points to is /// not allowed to be deleted as long as the NewtonSolver object exists. /// /// \param[in] param parameters controlling nonlinear Newton process /// \param[in, out] model physical simulation model. explicit NewtonSolver(const SolverParameters& param, std::unique_ptr model); /// Take a single forward step, after which the states will be modified /// according to the physical model. /// \param[in] dt time step size /// \param[in] reservoir_state reservoir state variables /// \param[in] well_state well state variables /// \return number of linear iterations used int step(const double dt, ReservoirState& reservoir_state, WellState& well_state); /// Number of Newton iterations used in all calls to step(). unsigned int newtonIterations() const; /// Number of linear solver iterations used in all calls to step(). unsigned int linearIterations() const; /// Number of linear solver iterations used in the last call to step(). unsigned int newtonIterationsLastStep() const; /// Number of linear solver iterations used in the last call to step(). unsigned int linearIterationsLastStep() const; private: // --------- Data members --------- SolverParameters param_; std::unique_ptr model_; unsigned int newtonIterations_; unsigned int linearIterations_; unsigned int newtonIterationsLast_; unsigned int linearIterationsLast_; // --------- Private methods --------- enum RelaxType relaxType() const { return param_.relax_type_; } double relaxMax() const { return param_.relax_max_; } double relaxIncrement() const { return param_.relax_increment_; } double relaxRelTol() const { return param_.relax_rel_tol_; } double maxIter() const { return param_.max_iter_; } double minIter() const { return param_.min_iter_; } void detectNewtonOscillations(const std::vector>& residual_history, const int it, const double relaxRelTol, bool& oscillate, bool& stagnate) const; void stabilizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const; }; } // namespace Opm #include "NewtonSolver_impl.hpp" #endif // OPM_NEWTONSOLVER_HEADER_INCLUDED