/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
namespace Opm
{
/// @brief Computes total mobility for a set of s/c values.
/// @param[in] props rock and fluid properties
/// @param[in] polyprops polymer properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[in] c polymer concentration
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector& cells,
const std::vector& s,
const std::vector& c,
std::vector& totmob)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
totmob.resize(num_cells);
ASSERT(int(s.size()) == num_cells*num_phases);
std::vector kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* mu = props.viscosity();
double inv_mu_eff[2] = { 0.0 };
for (int cell = 0; cell < num_cells; ++cell) {
totmob[cell] = 0;
polyprops.effectiveInvVisc(c[cell], mu, inv_mu_eff);
for (int phase = 0; phase < num_phases; ++phase) {
totmob[cell] += kr[num_phases*cell + phase]*inv_mu_eff[phase];
}
}
}
/// @brief Computes total mobility and omega for a set of s/c values.
/// @param[in] props rock and fluid properties
/// @param[in] polyprops polymer properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[in] c polymer concentration
/// @param[out] totmob total mobility
/// @param[out] omega mobility-weighted (or fractional-flow weighted)
/// fluid densities.
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector& cells,
const std::vector& s,
const std::vector& c,
std::vector& totmob,
std::vector& omega)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
totmob.resize(num_cells);
omega.resize(num_cells);
ASSERT(int(s.size()) == num_cells*num_phases);
std::vector kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* mu = props.viscosity();
double inv_mu_eff[2] = { 0.0 };
const double* rho = props.density();
for (int cell = 0; cell < num_cells; ++cell) {
totmob[cell] = 0.0;
omega[cell] = 0.0;
polyprops.effectiveInvVisc(c[cell], mu, inv_mu_eff);
for (int phase = 0; phase < num_phases; ++phase) {
totmob[cell] += kr[num_phases*cell + phase]*inv_mu_eff[phase];
}
// Must finish computing totmob before we can use it.
for (int phase = 0; phase < num_phases; ++phase) {
omega[cell] += rho[phase]*(kr[num_phases*cell + phase]*inv_mu_eff[phase])/totmob[cell];
}
}
}
/// @brief Computes injected and produced volumes of all phases,
/// and injeced and produced polymer mass.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
/// @param[out] polyinj injected mass of polymer
/// @param[out] polyprod produced mass of polymer
void computeInjectedProduced(const IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector& s,
const std::vector& c,
const std::vector& src,
const double dt,
const double inj_c,
double* injected,
double* produced,
double& polyinj,
double& polyprod)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
polyinj = 0.0;
polyprod = 0.0;
std::vector inv_eff_visc(np);
const double* visc = props.viscosity();
std::vector mob(np);
for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) {
injected[0] += src[cell]*dt;
polyinj += src[cell]*dt*inj_c;
} else if (src[cell] < 0.0) {
const double flux = -src[cell]*dt;
const double* sat = &s[np*cell];
props.relperm(1, sat, &cell, &mob[0], 0);
polyprops.effectiveInvVisc(c[cell], visc, &inv_eff_visc[0]);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] *= inv_eff_visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
polyprod += (mob[0]/totmob)*flux*c[cell]; // TODO check this term.
}
}
}
/// @brief Computes total polymer mass over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] dps dead pore space
/// @return total polymer mass in grid.
double computePolymerMass(const std::vector& pv,
const std::vector& s,
const std::vector& c,
const double dps)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double polymass = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
polymass += c[cell]*pv[cell]*s[np*cell + 0]*(1.0 - dps);
}
return polymass;
}
/// @brief Computes total absorbed polymer mass over all grid cells.
/// @param[in] polyprops polymer properties
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[in] cmax max polymer concentration for cell
/// @param[in] dps dead pore space
/// @return total absorbed polymer mass.
double computePolymerAbsorbed(const Opm::PolymerProperties& polyprops,
const std::vector& pv,
const std::vector& s,
const std::vector& cmax,
const double dps)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double abs_mass = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
const double max_polymass = cmax[cell]*pv[cell]*s[np*cell + 0]*(1.0 - dps);
abs_mass += polyprops.adsorbtion(cmax[cell])*max_polymass;
}
return abs_mass;
}
} // namespace Opm