/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static constexpr bool extraBhpAtThpLimitOutput = false; static constexpr bool extraThpFromBhpOutput = false; namespace Opm { bool WellBhpThpCalculator::wellHasTHPConstraints(const SummaryState& summaryState) const { const auto& well_ecl = well_.wellEcl(); if (well_ecl.isInjector()) { const auto controls = well_ecl.injectionControls(summaryState); if (controls.hasControl(Well::InjectorCMode::THP)) return true; } if (well_ecl.isProducer()) { const auto controls = well_ecl.productionControls(summaryState); if (controls.hasControl(Well::ProducerCMode::THP)) return true; } return false; } double WellBhpThpCalculator::getTHPConstraint(const SummaryState& summaryState) const { const auto& well_ecl = well_.wellEcl(); if (well_ecl.isInjector()) { const auto& controls = well_ecl.injectionControls(summaryState); return controls.thp_limit; } if (well_ecl.isProducer( )) { const auto& controls = well_ecl.productionControls(summaryState); return controls.thp_limit; } return 0.0; } double WellBhpThpCalculator::mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const { const auto& well_ecl = well_.wellEcl(); if (well_ecl.isInjector()) { const auto& controls = well_ecl.injectionControls(summaryState); return controls.bhp_limit; } if (well_ecl.isProducer( )) { const auto& controls = well_ecl.productionControls(summaryState); return controls.bhp_limit; } return 0.0; } double WellBhpThpCalculator::calculateThpFromBhp(const std::vector& rates, const double bhp, const double rho, const std::optional& alq, const double thp_limit, DeferredLogger& deferred_logger) const { assert(int(rates.size()) == 3); // the vfp related only supports three phases now. static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; const double aqua = rates[Water]; const double liquid = rates[Oil]; const double vapour = rates[Gas]; // pick the density in the top layer double thp = 0.0; const int table_id = well_.wellEcl().vfp_table_number(); if (well_.isInjector()) { assert(!alq.has_value()); const double vfp_ref_depth = well_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity()); auto thp_func = [this, table_id, vfp_ref_depth, aqua, liquid, vapour, dp]( const double bhp_value, const double pressure_loss) { return this->well_.vfpProperties()->getInj()->thp( table_id, aqua, liquid, vapour, bhp_value + dp - pressure_loss); }; thp = findThpFromBhpIteratively(thp_func, bhp, thp_limit, dp, deferred_logger); } else if (well_.isProducer()) { const double vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity()); auto thp_func = [this, table_id, vfp_ref_depth, aqua, liquid, vapour, dp, &alq] (const double bhp_value, const double pressure_loss) { return this->well_.vfpProperties()->getProd()->thp( table_id, aqua, liquid, vapour, bhp_value + dp - pressure_loss, alq.value()); }; thp = findThpFromBhpIteratively(thp_func, bhp, thp_limit, dp, deferred_logger); } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger); } return thp; } double WellBhpThpCalculator:: findThpFromBhpIteratively( const std::function& thp_func, const double bhp, const double thp_limit, const double dp, DeferredLogger& deferred_logger) const { auto pressure_loss = getVfpBhpAdjustment(bhp + dp, thp_limit); auto thp = thp_func(bhp, pressure_loss); const double tolerance = 1e-5 * unit::barsa; bool do_iterate = true; int it = 1; int max_iterations = 50; while(do_iterate) { if (it > max_iterations) { break; } double thp_prev = thp; pressure_loss = getVfpBhpAdjustment(bhp + dp - pressure_loss, thp_prev); thp = thp_func(bhp, pressure_loss); auto error = std::fabs(thp-thp_prev); if (extraThpFromBhpOutput) { const std::string msg = fmt::format( "findThpFromBhpIteratively(): iteration {}, thp = {}, bhp = {}, " "pressure_loss = {}, error = {}", it, thp, bhp+dp-pressure_loss, pressure_loss, error); deferred_logger.debug(msg); } if (std::fabs(thp-thp_prev) < tolerance) { break; } it++; } return thp; } std::optional WellBhpThpCalculator:: computeBhpAtThpLimitProd(const std::function(const double)>& frates, const SummaryState& summary_state, const double maxPerfPress, const double rho, const double alq_value, const double thp_limit, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) should be returned. static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; // Make the fbhp() function. const auto& controls = well_.wellEcl().productionControls(summary_state); const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number); const double vfp_ref_depth = table.getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity()); auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector& rates) { assert(rates.size() == 3); const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell()); const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell()); const bool use_vfpexp = well_.useVfpExplicit(); const double bhp = well_.vfpProperties()->getProd()->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value, wfr, gfr, use_vfpexp); return bhp - dp + getVfpBhpAdjustment(bhp, thp_limit); }; // Make the flo() function. auto flo = [&table](const std::vector& rates) { return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]); }; // Find the bhp-point where production becomes nonzero. auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); }; auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger); // could not solve for the bhp-point, we could not continue to find the bhp if (!bhp_max.has_value()) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to not being able to " "find bhp-point where production becomes non-zero for well " + well_.name()); return std::nullopt; } const std::array range {controls.bhp_limit, *bhp_max}; return this->computeBhpAtThpLimit(frates, fbhp, range, deferred_logger); } std::optional WellBhpThpCalculator:: computeBhpAtThpLimitInj(const std::function(const double)>& frates, const SummaryState& summary_state, const double rho, const double flo_rel_tol, const int max_iteration, const bool throwOnError, DeferredLogger& deferred_logger) const { if (throwOnError) { return computeBhpAtThpLimitInjImpl(frates, summary_state, rho, flo_rel_tol, max_iteration, deferred_logger); } else { return computeBhpAtThpLimitInjImpl(frates, summary_state, rho, flo_rel_tol, max_iteration, deferred_logger); } } void WellBhpThpCalculator::updateThp(const double rho, const bool stop_or_zero_rate_target, const std::function& alq_value, const std::array& active, WellState& well_state, const SummaryState& summary_state, DeferredLogger& deferred_logger) const { static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; auto& ws = well_state.well(well_.indexOfWell()); // When there is no vaild VFP table provided, we set the thp to be zero. if (!well_.isVFPActive(deferred_logger) || stop_or_zero_rate_target) { ws.thp = 0; return; } // For THP controlled wells, we know the thp value bool thp_controlled = well_.isInjector() ? ws.injection_cmode == Well::InjectorCMode::THP: ws.production_cmode == Well::ProducerCMode::THP; if (thp_controlled) { return; } // the well is under other control types, we calculate the thp based on bhp and rates std::vector rates(3, 0.0); const PhaseUsage& pu = well_.phaseUsage(); if (active[Water]) { rates[ Water ] = ws.surface_rates[pu.phase_pos[ Water ] ]; } if (active[Oil]) { rates[ Oil ] = ws.surface_rates[pu.phase_pos[ Oil ] ]; } if (active[Gas]) { rates[ Gas ] = ws.surface_rates[pu.phase_pos[ Gas ] ]; } const std::optional alq = this->well_.isProducer() ? std::optional(alq_value()) : std::nullopt; const double thp_limit = well_.getTHPConstraint(summary_state); ws.thp = this->calculateThpFromBhp(rates, ws.bhp, rho, alq, thp_limit, deferred_logger); } template EvalWell WellBhpThpCalculator:: calculateBhpFromThp(const WellState& well_state, const std::vector& rates, const Well& well, const SummaryState& summaryState, const double rho, DeferredLogger& deferred_logger) const { // TODO: when well is under THP control, the BHP is dependent on the rates, // the well rates is also dependent on the BHP, so it might need to do some iteration. // However, when group control is involved, change of the rates might impacts other wells // so iterations on a higher level will be required. Some investigation might be needed when // we face problems under THP control. assert(int(rates.size()) == 3); // the vfp related only supports three phases now. static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; const EvalWell aqua = rates[Water]; const EvalWell liquid = rates[Oil]; const EvalWell vapour = rates[Gas]; const double thp_limit = well_.getTHPConstraint(summaryState); double vfp_ref_depth; EvalWell bhp_tab; if (well_.isInjector() ) { const auto& controls = well.injectionControls(summaryState); vfp_ref_depth = well_.vfpProperties()->getInj()->getTable(controls.vfp_table_number).getDatumDepth(); bhp_tab = well_.vfpProperties()->getInj()->bhp( controls.vfp_table_number, aqua, liquid, vapour, thp_limit); } else if (well_.isProducer()) { const auto& controls = well.productionControls(summaryState); vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth(); const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell()); const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell()); const bool use_vfpexplicit = well_.useVfpExplicit(); bhp_tab = well_.vfpProperties()->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, thp_limit, well_.getALQ(well_state), wfr, gfr, use_vfpexplicit); } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER for well " + well_.name(), deferred_logger); } double bhp_tab_double_value; if constexpr (std::is_same_v) { bhp_tab_double_value = bhp_tab; } else { // EvalWell and bhp_tab is of type DenseAd::Evaluation bhp_tab_double_value = bhp_tab.value(); } const auto bhp_adjustment = getVfpBhpAdjustment(bhp_tab_double_value, thp_limit); const double dp_hydro = wellhelpers::computeHydrostaticCorrection( well_.refDepth(), vfp_ref_depth, rho, well_.gravity()); return bhp_tab - dp_hydro + bhp_adjustment; } double WellBhpThpCalculator::getVfpBhpAdjustment(const double bhp_tab, const double thp_limit) const { return well_.wellEcl().getWVFPDP().getPressureLoss(bhp_tab, thp_limit); } template std::optional WellBhpThpCalculator:: computeBhpAtThpLimitInjImpl(const std::function(const double)>& frates, const SummaryState& summary_state, const double rho, const double flo_rel_tol, const int max_iteration, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) is returned. // // In order to detect these situations, we will find piecewise // linear approximations both to the inverse of the frates // function and to the fbhp function. // // We first take the FLO sample points of the VFP curve, and // find the corresponding bhp values by solving the equation: // flo(frates(bhp)) - flo_sample = 0 // for bhp, for each flo_sample. The resulting (flo_sample, // bhp_sample) values give a piecewise linear approximation to // the true inverse inflow function, at the same flo values as // the VFP data. // // Then we extract a piecewise linear approximation from the // multilinear fbhp() by evaluating it at the flo_sample // points, with fractions given by the frates(bhp_sample) // values. // // When we have both piecewise linear curves defined on the // same flo_sample points, it is easy to distinguish between // the 0, 1 or 2 solution cases, and obtain the right interval // in which to solve for the solution we want (with highest // flow in case of 2 solutions). static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; // Make the fbhp() function. const auto& controls = well_.wellEcl().injectionControls(summary_state); const auto& table = well_.vfpProperties()->getInj()->getTable(controls.vfp_table_number); const double vfp_ref_depth = table.getDatumDepth(); const double thp_limit = this->getTHPConstraint(summary_state); const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity()); auto fbhp = [this, &controls, thp_limit, dp](const std::vector& rates) { assert(rates.size() == 3); const auto bhp = well_.vfpProperties()->getInj() ->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit); return bhp - dp + getVfpBhpAdjustment(bhp, thp_limit); }; // Make the flo() function. auto flo = [&table](const std::vector& rates) { return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]); }; // Get the flo samples, add extra samples at low rates and bhp // limit point if necessary. std::vector flo_samples = table.getFloAxis(); if (flo_samples[0] > 0.0) { const double f0 = flo_samples[0]; flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 }); } const double flo_bhp_limit = flo(frates(controls.bhp_limit)); if (flo_samples.back() < flo_bhp_limit) { flo_samples.push_back(flo_bhp_limit); } // Find bhp values for inflow relation corresponding to flo samples. std::vector bhp_samples; for (double flo_sample : flo_samples) { if (flo_sample > flo_bhp_limit) { // We would have to go over the bhp limit to obtain a // flow of this magnitude. We associate all such flows // with simply the bhp limit. The first one // encountered is considered valid, the rest not. They // are therefore skipped. bhp_samples.push_back(controls.bhp_limit); break; } auto eq = [&flo, &frates, flo_sample](double bhp) { return flo(frates(bhp)) - flo_sample; }; // TODO: replace hardcoded low/high limits. const double low = 10.0 * unit::barsa; const double high = 800.0 * unit::barsa; const double flo_tolerance = flo_rel_tol * std::fabs(flo_samples.back()); int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, flo_tolerance, iteration); bhp_samples.push_back(solved_bhp); } catch (...) { // Use previous value (or max value if at start) if we failed. bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back()); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES", "Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + well_.name()); } } // Find bhp values for VFP relation corresponding to flo samples. const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size() std::vector fbhp_samples(num_samples); for (int ii = 0; ii < num_samples; ++ii) { fbhp_samples[ii] = fbhp(frates(bhp_samples[ii])); } if constexpr (extraBhpAtThpLimitOutput) { std::string dbgmsg; dbgmsg += "flo: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(flo_samples[ii]); } dbgmsg += "\nbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(bhp_samples[ii]); } dbgmsg += "\nfbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(fbhp_samples[ii]); } OpmLog::debug(dbgmsg); } // Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve. // We only look at the valid int sign_change_index = -1; for (int ii = 0; ii < num_samples - 1; ++ii) { const double curr = fbhp_samples[ii] - bhp_samples[ii]; const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1]; if (curr * next < 0.0) { // Sign change in the [ii, ii + 1] interval. sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution. } } // Handle the no solution case. if (sign_change_index == -1) { return std::nullopt; } // Solve for the proper solution in the given interval. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // TODO: replace hardcoded low/high limits. const double low = bhp_samples[sign_change_index + 1]; const double high = bhp_samples[sign_change_index]; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; if (low == high) { // We are in the high flow regime where the bhp_samples // are all equal to the bhp_limit. assert(low == controls.bhp_limit); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + well_.name()); return std::nullopt; } try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); if constexpr (extraBhpAtThpLimitOutput) { OpmLog::debug("***** " + well_.name() + " solved_bhp = " + std::to_string(solved_bhp) + " flo_bhp_limit = " + std::to_string(flo_bhp_limit)); } return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + well_.name()); return std::nullopt; } } std::optional WellBhpThpCalculator:: bhpMax(const std::function& fflo, const double bhp_limit, const double maxPerfPress, const double vfp_flo_front, DeferredLogger& deferred_logger) const { // Find the bhp-point where production becomes nonzero. double bhp_max = 0.0; double low = bhp_limit; double high = maxPerfPress + 1.0 * unit::barsa; double f_low = fflo(low); double f_high = fflo(high); if constexpr (extraBhpAtThpLimitOutput) { deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " f(low) = " + std::to_string(f_low) + " f(high) = " + std::to_string(f_high)); } int adjustments = 0; const int max_adjustments = 10; const double adjust_amount = 5.0 * unit::barsa; while (f_low * f_high > 0.0 && adjustments < max_adjustments) { // Same sign, adjust high to see if we can flip it. high += adjust_amount; f_high = fflo(high); ++adjustments; } if (f_low * f_high > 0.0) { if (f_low > 0.0) { // Even at the BHP limit, we are injecting. // There will be no solution here, return an // empty optional. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to inoperability for well " + well_.name()); return std::nullopt; } else { // Still producing, even at high bhp. assert(f_high < 0.0); bhp_max = high; } } else { // Bisect to find a bhp point where we produce, but // not a large amount ('eps' below). const double eps = 0.1 * std::fabs(vfp_flo_front); const int maxit = 50; int it = 0; while (std::fabs(f_low) > eps && it < maxit) { const double curr = 0.5*(low + high); const double f_curr = fflo(curr); if (f_curr * f_low > 0.0) { low = curr; f_low = f_curr; } else { high = curr; f_high = f_curr; } ++it; } if (it < maxit) { bhp_max = low; } else { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Bisect did not find the bhp-point where we produce for well " + well_.name()); return std::nullopt; } } if constexpr (extraBhpAtThpLimitOutput) { deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " f(low) = " + std::to_string(f_low) + " f(high) = " + std::to_string(f_high) + " bhp_max = " + std::to_string(bhp_max)); } return bhp_max; } std::optional WellBhpThpCalculator:: computeBhpAtThpLimit(const std::function(const double)>& frates, const std::function)>& fbhp, const std::array& range, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) should be returned. // Define the equation we want to solve. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // Find appropriate brackets for the solution. std::optional approximate_solution; double low, high; // trying to use bisect way to locate a bracket bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger); // based on the origional design, if an approximate solution is suggested, we use this value directly // in the long run, we might change it if (approximate_solution.has_value()) { return *approximate_solution; } if (!finding_bracket) { deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt "); finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger); } if (!finding_bracket) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to not being able to " "bracket the bhp solution with the brute force search for " + well_.name()); return std::nullopt; } // Solve for the proper solution in the given interval. const int max_iteration = 100; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + well_.name()); return std::nullopt; } } bool WellBhpThpCalculator:: bisectBracket(const std::function& eq, const std::array& range, double& low, double& high, std::optional& approximate_solution, DeferredLogger& deferred_logger) const { bool finding_bracket = false; low = range[0]; high = range[1]; double eq_high = eq(high); double eq_low = eq(low); const double eq_bhplimit = eq_low; if constexpr (extraBhpAtThpLimitOutput) { deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " eq(low) = " + std::to_string(eq_low) + " eq(high) = " + std::to_string(eq_high)); } if (eq_low * eq_high > 0.0) { // Failed to bracket the zero. // If this is due to having two solutions, bisect until bracketed. double abs_low = std::fabs(eq_low); double abs_high = std::fabs(eq_high); int bracket_attempts = 0; const int max_bracket_attempts = 20; double interval = high - low; const double min_interval = 1.0 * unit::barsa; while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) { if (abs_high < abs_low) { low = 0.5 * (low + high); eq_low = eq(low); abs_low = std::fabs(eq_low); } else { high = 0.5 * (low + high); eq_high = eq(high); abs_high = std::fabs(eq_high); } interval = high - low; ++bracket_attempts; } if (eq_low * eq_high <= 0.) { // We have a bracket! finding_bracket = true; // Now, see if (bhplimit, low) is a bracket in addition to (low, high). // If so, that is the bracket we shall use, choosing the solution with the // highest flow. if (eq_low * eq_bhplimit <= 0.0) { high = low; low = range[0]; } } else { // eq_low * eq_high > 0.0 // Still failed bracketing! const double limit = 0.1 * unit::barsa; if (std::min(abs_low, abs_high) < limit) { // Return the least bad solution if less off than 0.1 bar. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE", "Robust bhp(thp) not solved precisely for well " + well_.name()); approximate_solution = abs_low < abs_high ? low : high; } else { // Return failure. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE", "Robust bhp(thp) solve failed due to bracketing failure for well " + well_.name()); } } } else { finding_bracket = true; } return finding_bracket; } bool WellBhpThpCalculator:: bruteForceBracket(const std::function& eq, const std::array& range, double& low, double& high, DeferredLogger& deferred_logger) { bool finding_bracket = false; low = range[0]; high = range[1]; const int sample_number = 200; const double interval = (high - low) / sample_number; double eq_low = eq(low); double eq_high; for (int i = 0; i < sample_number + 1; ++i) { high = range[0] + interval * i; eq_high = eq(high); if (eq_high * eq_low <= 0.) { finding_bracket = true; break; } low = high; eq_low = eq_high; } if (finding_bracket) { deferred_logger.debug( " brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) + " high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high)); } return finding_bracket; } #define INSTANCE(...) \ template __VA_ARGS__ WellBhpThpCalculator:: \ calculateBhpFromThp<__VA_ARGS__>(const WellState&, \ const std::vector<__VA_ARGS__>&, \ const Well&, \ const SummaryState&, \ const double, \ DeferredLogger&) const; INSTANCE(double) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) INSTANCE(DenseAd::Evaluation) } // namespace Opm