/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include namespace Opm { template WellInterface:: WellInterface(const Well2& well, const int time_step, const Wells* wells, const ModelParameters& param, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components) : well_ecl_(well) , current_step_(time_step) , param_(param) , rateConverter_(rate_converter) , pvtRegionIdx_(pvtRegionIdx) , num_components_(num_components) { if (time_step < 0) { OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface"); } if (!wells) { OPM_THROW(std::invalid_argument, "Null pointer of Wells is used to construct WellInterface"); } const std::string& well_name = well.name(); // looking for the location of the well in the wells struct int index_well; for (index_well = 0; index_well < wells->number_of_wells; ++index_well) { if (well_name == std::string(wells->name[index_well])) { break; } } // should not enter the constructor if the well does not exist in the wells struct // here, just another assertion. assert(index_well != wells->number_of_wells); index_of_well_ = index_well; well_type_ = wells->type[index_well]; number_of_phases_ = wells->number_of_phases; // copying the comp_frac { comp_frac_.resize(number_of_phases_); const int index_begin = index_well * number_of_phases_; std::copy(wells->comp_frac + index_begin, wells->comp_frac + index_begin + number_of_phases_, comp_frac_.begin() ); } ref_depth_ = wells->depth_ref[index_well]; // perforations related { const int perf_index_begin = wells->well_connpos[index_well]; const int perf_index_end = wells->well_connpos[index_well + 1]; number_of_perforations_ = perf_index_end - perf_index_begin; first_perf_ = perf_index_begin; well_cells_.resize(number_of_perforations_); std::copy(wells->well_cells + perf_index_begin, wells->well_cells + perf_index_end, well_cells_.begin() ); well_index_.resize(number_of_perforations_); std::copy(wells->WI + perf_index_begin, wells->WI + perf_index_end, well_index_.begin() ); saturation_table_number_.resize(number_of_perforations_); std::copy(wells->sat_table_id + perf_index_begin, wells->sat_table_id + perf_index_end, saturation_table_number_.begin() ); } // initialization of the completions mapping initCompletions(); well_efficiency_factor_ = 1.0; connectionRates_.resize(number_of_perforations_); well_productivity_index_logger_counter_ = 0; wellIsStopped_ = false; if (well.getStatus() == Well2::Status::STOP) { wellIsStopped_ = true; } wsolvent_ = 0.0; if (has_solvent && well.isInjector()) { auto injectorType = well_ecl_.injectorType(); if (injectorType == Well2::InjectorType::GAS) { wsolvent_ = well_ecl_.getSolventFraction(); } } } template void WellInterface:: updatePerforatedCell(std::vector& is_cell_perforated) { for (int perf_idx = 0; perf_idx void WellInterface:: init(const PhaseUsage* phase_usage_arg, const std::vector& /* depth_arg */, const double gravity_arg, const int /* num_cells */) { phase_usage_ = phase_usage_arg; gravity_ = gravity_arg; } template void WellInterface:: initCompletions() { assert(completions_.empty() ); const WellConnections& connections = well_ecl_.getConnections(); const int num_conns = connections.size(); int num_active_connections = 0; for (int c = 0; c < num_conns; ++c) { if (connections[c].state() == Connection::State::OPEN) { completions_[connections[c].complnum()].push_back(num_active_connections++); } } assert(num_active_connections == number_of_perforations_); } template void WellInterface:: setVFPProperties(const VFPProperties* vfp_properties_arg) { vfp_properties_ = vfp_properties_arg; } template void WellInterface:: setGuideRate(const GuideRate* guide_rate_arg) { guide_rate_ = guide_rate_arg; } template const std::string& WellInterface:: name() const { return well_ecl_.name(); } template WellType WellInterface:: wellType() const { return well_type_; } template int WellInterface:: indexOfWell() const { return index_of_well_; } template bool WellInterface:: getAllowCrossFlow() const { return well_ecl_.getAllowCrossFlow(); } template void WellInterface:: setWellEfficiencyFactor(const double efficiency_factor) { well_efficiency_factor_ = efficiency_factor; } template const Well2& WellInterface:: wellEcl() const { return well_ecl_; } template const PhaseUsage& WellInterface:: phaseUsage() const { assert(phase_usage_); return *phase_usage_; } template int WellInterface:: flowPhaseToEbosCompIdx( const int phaseIdx ) const { const auto& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // for other phases return the index return phaseIdx; } template int WellInterface:: ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const { const auto& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx) return pu.phase_pos[Water]; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == compIdx) return pu.phase_pos[Oil]; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == compIdx) return pu.phase_pos[Gas]; // for other phases return the index return compIdx; } template double WellInterface:: wsolvent() const { return wsolvent_; } template void WellInterface:: setWsolvent(const double wsolvent) { wsolvent_ = wsolvent; } template double WellInterface:: wpolymer() const { if (!has_polymer) { return 0.0; } auto injectorType = well_ecl_.injectorType(); if (injectorType == Well2::InjectorType::WATER) { WellPolymerProperties polymer = well_ecl_.getPolymerProperties(); const double polymer_injection_concentration = polymer.m_polymerConcentration; return polymer_injection_concentration; } else { // Not a water injection well => no polymer. return 0.0; } } template double WellInterface:: wfoam() const { if (!has_foam) { return 0.0; } auto injectorType = well_ecl_.injectorType(); if (injectorType == Well2::InjectorType::GAS) { WellFoamProperties fprop = well_ecl_.getFoamProperties(); return fprop.m_foamConcentration; } else { // Not a gas injection well => no foam. return 0.0; } } template bool WellInterface:: wellHasTHPConstraints(const SummaryState& summaryState) const { if (well_ecl_.isInjector()) { const auto controls = well_ecl_.injectionControls(summaryState); if (controls.hasControl(Well2::InjectorCMode::THP)) return true; } if (well_ecl_.isProducer( )) { const auto controls = well_ecl_.productionControls(summaryState); if (controls.hasControl(Well2::ProducerCMode::THP)) return true; } return false; } template double WellInterface:: mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const { if (well_ecl_.isInjector()) { const auto& controls = well_ecl_.injectionControls(summaryState); return controls.bhp_limit; } if (well_ecl_.isProducer( )) { const auto& controls = well_ecl_.productionControls(summaryState); return controls.bhp_limit; } return 0.0; } template double WellInterface:: getTHPConstraint(const SummaryState& summaryState) const { if (well_ecl_.isInjector()) { const auto& controls = well_ecl_.injectionControls(summaryState); return controls.thp_limit; } if (well_ecl_.isProducer( )) { const auto& controls = well_ecl_.productionControls(summaryState); return controls.thp_limit; } return 0.0; } template void WellInterface:: updateWellControl(const Simulator& ebos_simulator, WellState& well_state, Opm::DeferredLogger& deferred_logger) /* const */ { if (this->wellIsStopped()) { return; } const auto& summaryState = ebos_simulator.vanguard().summaryState(); const auto& well = well_ecl_; std::string from; if (well.isInjector()) { from = Well2::InjectorCMode2String(well_state.currentInjectionControls()[index_of_well_]); } else { from = Well2::ProducerCMode2String(well_state.currentProductionControls()[index_of_well_]); } bool changed = checkConstraints(well_state, summaryState); auto cc = Dune::MPIHelper::getCollectiveCommunication(); // checking whether control changed if (changed) { std::string to; if (well.isInjector()) { to = Well2::InjectorCMode2String(well_state.currentInjectionControls()[index_of_well_]); } else { to = Well2::ProducerCMode2String(well_state.currentProductionControls()[index_of_well_]); } std::ostringstream ss; ss << " Switching control mode for well " << name() << " from " << from << " to " << to; if (cc.size() > 1) { ss << " on rank " << cc.rank(); } deferred_logger.info(ss.str()); updateWellStateWithTarget(ebos_simulator, well_state, deferred_logger); updatePrimaryVariables(well_state, deferred_logger); } } template bool WellInterface:: underPredictionMode() const { return well_ecl_.predictionMode(); } template bool WellInterface:: checkRateEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, Opm::DeferredLogger& deferred_logger) const { const Opm::PhaseUsage& pu = phaseUsage(); const int np = number_of_phases_; if (econ_production_limits.onMinOilRate()) { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ]; const double min_oil_rate = econ_production_limits.minOilRate(); if (std::abs(oil_rate) < min_oil_rate) { return true; } } if (econ_production_limits.onMinGasRate() ) { assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ]; const double min_gas_rate = econ_production_limits.minGasRate(); if (std::abs(gas_rate) < min_gas_rate) { return true; } } if (econ_production_limits.onMinLiquidRate() ) { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; const double min_liquid_rate = econ_production_limits.minLiquidRate(); if (std::abs(liquid_rate) < min_liquid_rate) { return true; } } if (econ_production_limits.onMinReservoirFluidRate()) { deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet"); } return false; } template void WellInterface:: checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, RatioLimitCheckReport& report) const { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); // function to calculate water cut based on rates auto waterCut = [](const std::vector& rates, const PhaseUsage& pu) { const double oil_rate = rates[pu.phase_pos[Oil]]; const double water_rate = rates[pu.phase_pos[Water]]; // both rate should be in the same direction assert(oil_rate * water_rate >= 0.); const double liquid_rate = oil_rate + water_rate; if (liquid_rate != 0.) { return (water_rate / liquid_rate); } else { return 0.; } }; const double max_water_cut_limit = econ_production_limits.maxWaterCut(); assert(max_water_cut_limit > 0.); const bool watercut_limit_violated = checkMaxRatioLimitWell(well_state, max_water_cut_limit, waterCut); if (watercut_limit_violated) { report.ratio_limit_violated = true; checkMaxRatioLimitCompletions(well_state, max_water_cut_limit, waterCut, report); } } template void WellInterface:: checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, RatioLimitCheckReport& report) const { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); // function to calculate gor based on rates auto gor = [](const std::vector& rates, const PhaseUsage& pu) { const double oil_rate = rates[pu.phase_pos[Oil]]; const double gas_rate = rates[pu.phase_pos[Gas]]; // both rate should be in the same direction assert(oil_rate * gas_rate >= 0.); double gas_oil_ratio = 0.; if (oil_rate != 0.) { gas_oil_ratio = gas_rate / oil_rate; } else { if (gas_rate != 0.) { gas_oil_ratio = 1.e100; // big value to mark it as violated } else { gas_oil_ratio = 0.0; } } return gas_oil_ratio; }; const double max_gor_limit = econ_production_limits.maxGasOilRatio(); assert(max_gor_limit > 0.); const bool gor_limit_violated = checkMaxRatioLimitWell(well_state, max_gor_limit, gor); if (gor_limit_violated) { report.ratio_limit_violated = true; checkMaxRatioLimitCompletions(well_state, max_gor_limit, gor, report); } } template void WellInterface:: checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, RatioLimitCheckReport& report, Opm::DeferredLogger& deferred_logger) const { // TODO: not sure how to define the worst-offending completion when more than one // ratio related limit is violated. // The defintion used here is that we define the violation extent based on the // ratio between the value and the corresponding limit. // For each violated limit, we decide the worst-offending completion separately. // Among the worst-offending completions, we use the one has the biggest violation // extent. if (econ_production_limits.onMaxWaterCut()) { checkMaxWaterCutLimit(econ_production_limits, well_state, report); } if (econ_production_limits.onMaxGasOilRatio()) { checkMaxGORLimit(econ_production_limits, well_state, report); } if (econ_production_limits.onMaxWaterGasRatio()) { deferred_logger.warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!"); } if (econ_production_limits.onMaxGasLiquidRatio()) { deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!"); } if (report.ratio_limit_violated) { assert(report.worst_offending_completion != INVALIDCOMPLETION); assert(report.violation_extent > 1.); } } template template bool WellInterface:: checkMaxRatioLimitWell(const WellState& well_state, const double max_ratio_limit, const RatioFunc& ratioFunc) const { const int np = number_of_phases_; std::vector well_rates(np, 0.0); for (int p = 0; p < np; ++p) { well_rates[p] = well_state.wellRates()[index_of_well_ * np + p]; } const double well_ratio = ratioFunc(well_rates, phaseUsage()); return (well_ratio > max_ratio_limit); } template template void WellInterface:: checkMaxRatioLimitCompletions(const WellState& well_state, const double max_ratio_limit, const RatioFunc& ratioFunc, RatioLimitCheckReport& report) const { int worst_offending_completion = INVALIDCOMPLETION; // the maximum water cut value of the completions // it is used to identify the most offending completion double max_ratio_completion = 0; // look for the worst_offending_completion for (const auto& completion : completions_) { const int np = number_of_phases_; std::vector completion_rates(np, 0.0); // looping through the connections associated with the completion const std::vector& conns = completion.second; for (const int c : conns) { const int index_con = c + first_perf_; for (int p = 0; p < np; ++p) { const double connection_rate = well_state.perfPhaseRates()[index_con * np + p]; completion_rates[p] += connection_rate; } } // end of for (const int c : conns) const double ratio_completion = ratioFunc(completion_rates, phaseUsage()); if (ratio_completion > max_ratio_completion) { worst_offending_completion = completion.first; max_ratio_completion = ratio_completion; } } // end of for (const auto& completion : completions_) assert(max_ratio_completion > max_ratio_limit); assert(worst_offending_completion != INVALIDCOMPLETION); const double violation_extent = max_ratio_completion / max_ratio_limit; assert(violation_extent > 1.0); if (violation_extent > report.violation_extent) { report.worst_offending_completion = worst_offending_completion; report.violation_extent = violation_extent; } } template void WellInterface:: updateWellTestState(const WellState& well_state, const double& simulationTime, const bool& writeMessageToOPMLog, WellTestState& wellTestState, Opm::DeferredLogger& deferred_logger) const { // currently, we only updateWellTestState for producers if (wellType() != PRODUCER) { return; } // Based on current understanding, only under prediction mode, we need to shut well due to various // reasons or limits. With more knowlage or testing cases later, this might need to be corrected. if (!underPredictionMode() ) { return; } // updating well test state based on physical (THP/BHP) limits. updateWellTestStatePhysical(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger); // updating well test state based on Economic limits. updateWellTestStateEconomic(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger); // TODO: well can be shut/closed due to other reasons } template void WellInterface:: updateWellTestStatePhysical(const WellState& /* well_state */, const double simulation_time, const bool write_message_to_opmlog, WellTestState& well_test_state, Opm::DeferredLogger& deferred_logger) const { if (!isOperable() || wellIsStopped_) { if (well_test_state.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC) || well_test_state.hasWellClosed(name(), WellTestConfig::Reason::PHYSICAL) ) { // Already closed, do nothing. } else { well_test_state.closeWell(name(), WellTestConfig::Reason::PHYSICAL, simulation_time); if (write_message_to_opmlog) { const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped"; const std::string msg = "Well " + name() + " will be " + action + " as it can not operate under current reservoir conditions."; deferred_logger.info(msg); } } } } template void WellInterface:: updateWellTestStateEconomic(const WellState& well_state, const double simulation_time, const bool write_message_to_opmlog, WellTestState& well_test_state, Opm::DeferredLogger& deferred_logger) const { if (wellIsStopped_) return; const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits(); // if no limit is effective here, then continue to the next well if ( !econ_production_limits.onAnyEffectiveLimit() ) { return; } // flag to check if the mim oil/gas rate limit is violated bool rate_limit_violated = false; // for the moment, we only handle rate limits, not handling potential limits // the potential limits should not be difficult to add const auto& quantity_limit = econ_production_limits.quantityLimit(); if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN) { const std::string msg = std::string("POTN limit for well ") + name() + std::string(" is not supported for the moment. \n") + std::string("All the limits will be evaluated based on RATE. "); deferred_logger.warning("NOT_SUPPORTING_POTN", msg); } if (econ_production_limits.onAnyRateLimit()) { rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, deferred_logger); } if (rate_limit_violated) { if (econ_production_limits.endRun()) { const std::string warning_message = std::string("ending run after well closed due to economic limits") + std::string("is not supported yet \n") + std::string("the program will keep running after ") + name() + std::string(" is closed"); deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message); } if (econ_production_limits.validFollowonWell()) { deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet"); } well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time); if (write_message_to_opmlog) { if (well_ecl_.getAutomaticShutIn()) { const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit"); deferred_logger.info(msg); } else { const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit"); deferred_logger.info(msg); } } // the well is closed, not need to check other limits return; } if ( !econ_production_limits.onAnyRatioLimit() ) { // there is no need to check the ratio limits return; } // checking for ratio related limits, mostly all kinds of ratio. RatioLimitCheckReport ratio_report; checkRatioEconLimits(econ_production_limits, well_state, ratio_report, deferred_logger); if (ratio_report.ratio_limit_violated) { const auto workover = econ_production_limits.workover(); switch (workover) { case WellEconProductionLimits::EconWorkover::CON: { const int worst_offending_completion = ratio_report.worst_offending_completion; well_test_state.addClosedCompletion(name(), worst_offending_completion, simulation_time); if (write_message_to_opmlog) { if (worst_offending_completion < 0) { const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion) + std::string(" for well ") + name() + std::string(" will be closed due to economic limit"); deferred_logger.info(msg); } else { const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion) + std::string(" for well ") + name() + std::string(" will be closed due to economic limit"); deferred_logger.info(msg); } } bool allCompletionsClosed = true; const auto& connections = well_ecl_.getConnections(); for (const auto& connection : connections) { if (!well_test_state.hasCompletion(name(), connection.complnum())) { allCompletionsClosed = false; } } if (allCompletionsClosed) { well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time); if (write_message_to_opmlog) { if (well_ecl_.getAutomaticShutIn()) { const std::string msg = name() + std::string(" will be shut due to last completion closed"); deferred_logger.info(msg); } else { const std::string msg = name() + std::string(" will be stopped due to last completion closed"); deferred_logger.info(msg); } } } break; } case WellEconProductionLimits::EconWorkover::WELL: { well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time); if (write_message_to_opmlog) { if (well_ecl_.getAutomaticShutIn()) { // tell the control that the well is closed const std::string msg = name() + std::string(" will be shut due to ratio economic limit"); deferred_logger.info(msg); } else { const std::string msg = name() + std::string(" will be stopped due to ratio economic limit"); deferred_logger.info(msg); } } break; } case WellEconProductionLimits::EconWorkover::NONE: break; default: { deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE", "not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) ); } } } } template void WellInterface:: wellTesting(const Simulator& simulator, const std::vector& B_avg, const double simulation_time, const int report_step, const WellTestConfig::Reason testing_reason, /* const */ WellState& well_state, WellTestState& well_test_state, Opm::DeferredLogger& deferred_logger) { if (testing_reason == WellTestConfig::Reason::PHYSICAL) { wellTestingPhysical(simulator, B_avg, simulation_time, report_step, well_state, well_test_state, deferred_logger); } if (testing_reason == WellTestConfig::Reason::ECONOMIC) { wellTestingEconomic(simulator, B_avg, simulation_time, well_state, well_test_state, deferred_logger); } } template void WellInterface:: wellTestingEconomic(const Simulator& simulator, const std::vector& B_avg, const double simulation_time, const WellState& well_state, WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger) { deferred_logger.info(" well " + name() + " is being tested for economic limits"); WellState well_state_copy = well_state; updateWellStateWithTarget(simulator, well_state_copy, deferred_logger); calculateExplicitQuantities(simulator, well_state_copy, deferred_logger); updatePrimaryVariables(well_state_copy, deferred_logger); initPrimaryVariablesEvaluation(); WellTestState welltest_state_temp; bool testWell = true; // if a well is closed because all completions are closed, we need to check each completion // individually. We first open all completions, then we close one by one by calling updateWellTestState // untill the number of closed completions do not increase anymore. while (testWell) { const size_t original_number_closed_completions = welltest_state_temp.sizeCompletions(); solveWellForTesting(simulator, well_state_copy, B_avg, deferred_logger); updateWellTestState(well_state_copy, simulation_time, /*writeMessageToOPMLog=*/ false, welltest_state_temp, deferred_logger); closeCompletions(welltest_state_temp); // Stop testing if the well is closed or shut due to all completions shut // Also check if number of completions has increased. If the number of closed completions do not increased // we stop the testing. // TODO: it can be tricky here, if the well is shut/closed due to other reasons if ( welltest_state_temp.sizeWells() > 0 || (original_number_closed_completions == welltest_state_temp.sizeCompletions()) ) { testWell = false; // this terminates the while loop } } // update wellTestState if the well test succeeds if (!welltest_state_temp.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC)) { welltest_state.openWell(name(), WellTestConfig::Reason::ECONOMIC); const std::string msg = std::string("well ") + name() + std::string(" is re-opened through ECONOMIC testing"); deferred_logger.info(msg); // also reopen completions for (auto& completion : well_ecl_.getCompletions()) { if (!welltest_state_temp.hasCompletion(name(), completion.first)) { welltest_state.dropCompletion(name(), completion.first); } } } } template void WellInterface:: computeRepRadiusPerfLength(const Grid& grid, const std::vector& cartesian_to_compressed, Opm::DeferredLogger& deferred_logger ) { const int* cart_dims = Opm::UgGridHelpers::cartDims(grid); auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid); auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid); const int nperf = number_of_perforations_; perf_rep_radius_.clear(); perf_length_.clear(); bore_diameters_.clear(); perf_rep_radius_.reserve(nperf); perf_length_.reserve(nperf); bore_diameters_.reserve(nperf); // COMPDAT handling const auto& connectionSet = well_ecl_.getConnections(); for (size_t c=0; c double WellInterface::scalingFactor(const int phaseIdx) const { const auto& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx) return 1.0; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx) return 1.0; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx) return 0.01; if (has_solvent && phaseIdx == contiSolventEqIdx ) return 0.01; // we should not come this far assert(false); return 1.0; } template bool WellInterface::isVFPActive(Opm::DeferredLogger& deferred_logger) const { // since the well_controls only handles the VFP number when THP constraint/target is there. // we need to get the table number through the parser, in case THP constraint/target is not there. // When THP control/limit is not active, if available VFP table is provided, we will still need to // update THP value. However, it will only used for output purpose. if (well_type_ == PRODUCER) { // producer const int table_id = well_ecl_.vfp_table_number(); if (table_id <= 0) { return false; } else { if (vfp_properties_->getProd()->hasTable(table_id)) { return true; } else { OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specfied," << " for well " << name() << ", while we could not access it during simulation", deferred_logger); } } } else { // injector const int table_id = well_ecl_.vfp_table_number(); if (table_id <= 0) { return false; } else { if (vfp_properties_->getInj()->hasTable(table_id)) { return true; } else { OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specfied," << " for well " << name() << ", while we could not access it during simulation", deferred_logger); } } } } template bool WellInterface:: solveWellEqUntilConverged(const Simulator& ebosSimulator, const std::vector& B_avg, WellState& well_state, Opm::DeferredLogger& deferred_logger) { const int max_iter = param_.max_welleq_iter_; int it = 0; const double dt = 1.0; //not used for the well tests bool converged; WellState well_state0 = well_state; do { assembleWellEq(ebosSimulator, B_avg, dt, well_state, deferred_logger); auto report = getWellConvergence(well_state, B_avg, deferred_logger); converged = report.converged(); if (converged) { break; } ++it; solveEqAndUpdateWellState(well_state, deferred_logger); // We don't allow for switching well controls while computing well potentials and testing wells // updateWellControl(ebosSimulator, well_state, deferred_logger); initPrimaryVariablesEvaluation(); } while (it < max_iter); return converged; } template void WellInterface::calculateReservoirRates(WellState& well_state) const { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); const int well_rate_index = np * index_of_well_; for (int p = 0; p < np; ++p) { surface_rates[p] = well_state.wellRates()[well_rate_index + p]; } std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); for (int p = 0; p < np; ++p) { well_state.wellReservoirRates()[well_rate_index + p] = voidage_rates[p]; } } template void WellInterface::closeCompletions(WellTestState& wellTestState) { const auto& connections = well_ecl_.getConnections(); int perfIdx = 0; for (const auto& connection : connections) { if (wellTestState.hasCompletion(name(), connection.complnum())) { well_index_[perfIdx] = 0.0; } perfIdx++; } } template void WellInterface:: solveWellForTesting(const Simulator& ebosSimulator, WellState& well_state, const std::vector& B_avg, Opm::DeferredLogger& deferred_logger) { // keep a copy of the original well state const WellState well_state0 = well_state; const bool converged = solveWellEqUntilConverged(ebosSimulator, B_avg, well_state, deferred_logger); if (converged) { deferred_logger.debug("WellTest: Well equation for well " + name() + " converged"); } else { const int max_iter = param_.max_welleq_iter_; deferred_logger.debug("WellTest: Well equation for well " +name() + " failed converging in " + std::to_string(max_iter) + " iterations"); well_state = well_state0; } } template void WellInterface::scaleProductivityIndex(const int perfIdx, double& productivity_index, const bool new_well, Opm::DeferredLogger& deferred_logger) { const auto& connection = well_ecl_.getConnections()[perfIdx]; if (well_ecl_.getDrainageRadius() < 0) { if (new_well && perfIdx == 0) { deferred_logger.warning("PRODUCTIVITY_INDEX_WARNING", "Negative drainage radius not supported. The productivity index is set to zero"); } productivity_index = 0.0; return; } if (connection.r0() > well_ecl_.getDrainageRadius()) { if (new_well && well_productivity_index_logger_counter_ < 1) { deferred_logger.info("PRODUCTIVITY_INDEX_INFO", "The effective radius is larger than the well drainage radius for well " + name() + " They are set to equal in the well productivity index calculations"); well_productivity_index_logger_counter_++; } return; } // For zero drainage radius the productivity index is just the transmissibility times the mobility if (well_ecl_.getDrainageRadius() == 0) { return; } // Scale the productivity index to account for the drainage radius. // Assumes steady radial flow only valied for horizontal wells productivity_index *= (std::log(connection.r0() / connection.rw()) + connection.skinFactor()) / (std::log(well_ecl_.getDrainageRadius() / connection.rw()) + connection.skinFactor()); } template void WellInterface::addCellRates(RateVector& rates, int cellIdx) const { for (int perfIdx = 0; perfIdx < number_of_perforations_; ++perfIdx) { if (cells()[perfIdx] == cellIdx) { for (int i = 0; i < RateVector::dimension; ++i) { rates[i] += connectionRates_[perfIdx][i]; } } } } template typename WellInterface::Scalar WellInterface::volumetricSurfaceRateForConnection(int cellIdx, int phaseIdx) const { for (int perfIdx = 0; perfIdx < number_of_perforations_; ++perfIdx) { if (cells()[perfIdx] == cellIdx) { const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); return connectionRates_[perfIdx][activeCompIdx].value(); } } // this is not thread safe OPM_THROW(std::invalid_argument, "The well with name " + name() + " does not perforate cell " + std::to_string(cellIdx)); return 0.0; } template bool WellInterface:: isOperable() const { return operability_status_.isOperable(); } template bool WellInterface:: checkConstraints(WellState& well_state, const SummaryState& summaryState) { const auto& well = well_ecl_; const PhaseUsage& pu = phaseUsage(); const int well_index = index_of_well_; const auto wellrate_index = well_index * pu.num_phases; // bool changed = false; // // Stopped wells can not change control // if (currentControl == "STOP") // return newControl; if (well.isInjector()) { const auto controls = well.injectionControls(summaryState); Opm::Well2::InjectorCMode& currentControl = well_state.currentInjectionControls()[well_index]; if (controls.hasControl(Well2::InjectorCMode::BHP) && currentControl != Well2::InjectorCMode::BHP) { const auto& bhp = controls.bhp_limit; double current_bhp = well_state.bhp()[well_index]; if (bhp < current_bhp) { currentControl = Well2::InjectorCMode::BHP; return true; } } if (controls.hasControl(Well2::InjectorCMode::RATE) && currentControl != Well2::InjectorCMode::RATE) { Well2::InjectorType injectorType = controls.injector_type; double current_rate = 0.0; switch (injectorType) { case Well2::InjectorType::WATER: { current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ]; break; } case Well2::InjectorType::OIL: { current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ]; break; } case Well2::InjectorType::GAS: { current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ]; break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + well.name()); } if (controls.surface_rate < current_rate) { currentControl = Well2::InjectorCMode::RATE; return true; } } if (controls.hasControl(Well2::InjectorCMode::RESV) && currentControl != Well2::InjectorCMode::RESV) { double current_rate = 0.0; if( pu.phase_used[BlackoilPhases::Aqua] ) current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ]; if( pu.phase_used[BlackoilPhases::Liquid] ) current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ]; if( pu.phase_used[BlackoilPhases::Vapour] ) current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ]; if (controls.reservoir_rate < current_rate) { currentControl = Well2::InjectorCMode::RESV; return true; } } if (controls.hasControl(Well2::InjectorCMode::THP) && currentControl != Well2::InjectorCMode::THP) { const auto& thp = controls.thp_limit; double current_thp = well_state.thp()[well_index]; if (thp < current_thp) { currentControl = Well2::InjectorCMode::THP; return true; } } } if (well.isProducer( )) { const auto controls = well.productionControls(summaryState); Well2::ProducerCMode& currentControl = well_state.currentProductionControls()[well_index]; if (controls.hasControl(Well2::ProducerCMode::BHP) && currentControl != Well2::ProducerCMode::BHP ) { const double bhp = controls.bhp_limit; double current_bhp = well_state.bhp()[well_index]; if (bhp > current_bhp) { currentControl = Well2::ProducerCMode::BHP; return true; } } if (controls.hasControl(Well2::ProducerCMode::ORAT) && currentControl != Well2::ProducerCMode::ORAT) { double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ]; if (controls.oil_rate < current_rate ) { currentControl = Well2::ProducerCMode::ORAT; return true; } } if (controls.hasControl(Well2::ProducerCMode::WRAT) && currentControl != Well2::ProducerCMode::WRAT ) { double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ]; if (controls.water_rate < current_rate ) { currentControl = Well2::ProducerCMode::WRAT; return true; } } if (controls.hasControl(Well2::ProducerCMode::GRAT) && currentControl != Well2::ProducerCMode::GRAT ) { double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ]; if (controls.gas_rate < current_rate ) { currentControl = Well2::ProducerCMode::GRAT; return true; } } if (controls.hasControl(Well2::ProducerCMode::LRAT) && currentControl != Well2::ProducerCMode::LRAT) { double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ]; current_rate -= well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ]; if (controls.liquid_rate < current_rate ) { currentControl = Well2::ProducerCMode::LRAT; return true; } } if (controls.hasControl(Well2::ProducerCMode::RESV) && currentControl != Well2::ProducerCMode::RESV ) { double current_rate = 0.0; if( pu.phase_used[BlackoilPhases::Aqua] ) current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ]; if( pu.phase_used[BlackoilPhases::Liquid] ) current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ]; if( pu.phase_used[BlackoilPhases::Vapour] ) current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ]; if (controls.prediction_mode && controls.resv_rate > current_rate) { currentControl = Well2::ProducerCMode::RESV; return true; } if (!controls.prediction_mode) { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); if( pu.phase_used[BlackoilPhases::Aqua] ) surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate; if( pu.phase_used[BlackoilPhases::Liquid] ) surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate; if( pu.phase_used[BlackoilPhases::Vapour] ) surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate; std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); double resv_rate = 0.0; for (int p = 0; p < np; ++p) { resv_rate += voidage_rates[p]; } if (resv_rate < current_rate) { currentControl = Well2::ProducerCMode::RESV; return true; } } } if (controls.hasControl(Well2::ProducerCMode::THP) && currentControl != Well2::ProducerCMode::THP) { const auto& thp = controls.thp_limit; double current_thp = well_state.thp()[well_index]; if (thp > current_thp) { currentControl = Well2::ProducerCMode::THP; return true; } } } return false; } }