/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 - 2017 Statoil ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED #define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm::Properties { template struct EnableTerminalOutput { using type = UndefinedProperty; }; } // namespace Opm::Properties namespace Opm { /// Class for handling the blackoil well model. template class BlackoilWellModel : public BaseAuxiliaryModule , public BlackoilWellModelGeneric { public: // --------- Types --------- typedef BlackoilModelParametersEbos ModelParameters; using Grid = GetPropType; using FluidSystem = GetPropType; using ElementContext = GetPropType; using Indices = GetPropType; using Simulator = GetPropType; using Scalar = GetPropType; using RateVector = GetPropType; using GlobalEqVector = GetPropType; using SparseMatrixAdapter = GetPropType; typedef typename BaseAuxiliaryModule::NeighborSet NeighborSet; static const int numEq = Indices::numEq; static const int solventSaturationIdx = Indices::solventSaturationIdx; static constexpr bool has_solvent_ = getPropValue(); static constexpr bool has_polymer_ = getPropValue(); static constexpr bool has_energy_ = getPropValue(); // TODO: where we should put these types, WellInterface or Well Model? // or there is some other strategy, like TypeTag typedef Dune::FieldVector VectorBlockType; typedef Dune::BlockVector BVector; typedef Dune::FieldMatrix MatrixBlockType; typedef BlackOilPolymerModule PolymerModule; // For the conversion between the surface volume rate and resrevoir voidage rate using RateConverterType = RateConverter:: SurfaceToReservoirVoidage >; BlackoilWellModel(Simulator& ebosSimulator); void init(); ///////////// // ///////////// unsigned numDofs() const // No extra dofs are inserted for wells. (we use a Schur complement.) { return 0; } void addNeighbors(std::vector& neighbors) const; void applyInitial() {} void linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res); void postSolve(GlobalEqVector& deltaX) { recoverWellSolutionAndUpdateWellState(deltaX); } ///////////// // ///////////// template void deserialize(Restarter& /* res */) { // TODO (?) } /*! * \brief This method writes the complete state of the well * to the harddisk. */ template void serialize(Restarter& /* res*/) { // TODO (?) } void beginEpisode() { beginReportStep(ebosSimulator_.episodeIndex()); } void beginTimeStep(); void beginIteration() { assemble(ebosSimulator_.model().newtonMethod().numIterations(), ebosSimulator_.timeStepSize()); } void endIteration() { } void endTimeStep() { timeStepSucceeded(ebosSimulator_.time(), ebosSimulator_.timeStepSize()); } void endEpisode() { endReportStep(); } template void computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const; using WellInterfacePtr = std::shared_ptr >; WellInterfacePtr well(const std::string& wellName) const; using BlackoilWellModelGeneric::initFromRestartFile; void initFromRestartFile(const RestartValue& restartValues) { initFromRestartFile(restartValues, UgGridHelpers::numCells(grid()), param_.use_multisegment_well_); } data::Wells wellData() const { auto wsrpt = this->wellState().report(UgGridHelpers::globalCell(grid()), [this](const int well_ndex) -> bool { return this->wasDynamicallyShutThisTimeStep(well_ndex); }); this->assignWellGuideRates(wsrpt); this->assignShutConnections(wsrpt, this->reportStepIndex()); return wsrpt; } // substract Binv(D)rw from r; void apply( BVector& r) const; // subtract B*inv(D)*C * x from A*x void apply(const BVector& x, BVector& Ax) const; #if HAVE_CUDA || HAVE_OPENCL // accumulate the contributions of all Wells in the WellContributions object void getWellContributions(WellContributions& x) const; #endif // apply well model with scaling of alpha void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const; // Check if well equations is converged. ConvergenceReport getWellConvergence(const std::vector& B_avg, const bool checkGroupConvergence = false) const; const SimulatorReportSingle& lastReport() const; void addWellContributions(SparseMatrixAdapter& jacobian) const { for ( const auto& well: well_container_ ) { well->addWellContributions(jacobian); } } // called at the beginning of a report step void beginReportStep(const int time_step); void updatePerforationIntensiveQuantities(); // it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation() // makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions // twice at the beginning of the time step /// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated /// at the beginning of the time step and no derivatives are included in these quantities void calculateExplicitQuantities(DeferredLogger& deferred_logger) const; // some preparation work, mostly related to group control and RESV, // at the beginning of each time step (Not report step) void prepareTimeStep(DeferredLogger& deferred_logger); void initPrimaryVariablesEvaluation() const; void updateWellControls(DeferredLogger& deferred_logger, const bool checkGroupControls); WellInterfacePtr getWell(const std::string& well_name) const; protected: Simulator& ebosSimulator_; // a vector of all the wells. std::vector well_container_{}; std::vector is_cell_perforated_{}; void initializeWellState(const int timeStepIdx, const SummaryState& summaryState); // create the well container std::vector createWellContainer(const int time_step); WellInterfacePtr createWellPointer(const int wellID, const int time_step) const; template std::unique_ptr createTypedWellPointer(const int wellID, const int time_step) const; WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step, DeferredLogger& deferred_logger) const; const ModelParameters param_; size_t global_num_cells_{}; // the number of the cells in the local grid size_t local_num_cells_{}; double gravity_{}; std::vector depth_{}; bool report_step_starts_{}; bool alternative_well_rate_init_{}; std::optional last_run_wellpi_{}; std::unique_ptr rateConverter_{}; SimulatorReportSingle last_report_{}; // used to better efficiency of calcuation mutable BVector scaleAddRes_{}; std::vector B_avg_{}; const Grid& grid() const { return ebosSimulator_.vanguard().grid(); } const EclipseState& eclState() const { return ebosSimulator_.vanguard().eclState(); } // compute the well fluxes and assemble them in to the reservoir equations as source terms // and in the well equations. void assemble(const int iterationIdx, const double dt); // called at the end of a time step void timeStepSucceeded(const double& simulationTime, const double dt); // called at the end of a report step void endReportStep(); // using the solution x to recover the solution xw for wells and applying // xw to update Well State void recoverWellSolutionAndUpdateWellState(const BVector& x); // setting the well_solutions_ based on well_state. void updatePrimaryVariables(DeferredLogger& deferred_logger); void setupCartesianToCompressed_(const int* global_cell, int local_num__cells); void updateAverageFormationFactor(); // Calculating well potentials for each well void updateWellPotentials(const int reportStepIdx, const bool onlyAfterEvent, DeferredLogger& deferred_logger); const std::vector& wellPerfEfficiencyFactors() const; void calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger); void calculateProductivityIndexValues(DeferredLogger& deferred_logger); void calculateProductivityIndexValues(const WellInterface* wellPtr, DeferredLogger& deferred_logger); // The number of components in the model. int numComponents() const; int reportStepIndex() const; void assembleWellEq(const double dt, DeferredLogger& deferred_logger); void maybeDoGasLiftOptimize(DeferredLogger& deferred_logger); void extractLegacyCellPvtRegionIndex_(); void extractLegacyDepth_(); /// upate the wellTestState related to economic limits void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const; void wellTesting(const int timeStepIdx, const double simulationTime, DeferredLogger& deferred_logger); void calcRates(const int fipnum, const int pvtreg, std::vector& resv_coeff) override; void runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger); void computeWellTemperature(); private: BlackoilWellModel(Simulator& ebosSimulator, const PhaseUsage& pu); }; } // namespace Opm #include "BlackoilWellModel_impl.hpp" #endif