// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::PvsLocalResidual */ #ifndef EWOMS_PVS_LOCAL_RESIDUAL_HH #define EWOMS_PVS_LOCAL_RESIDUAL_HH #include "pvsproperties.hh" #include #include #include namespace Opm { /*! * \ingroup PvsModel * * \brief Element-wise calculation of the local residual for the * compositional multi-phase primary variable switching model. */ template class PvsLocalResidual : public GetPropType { using Evaluation = GetPropType; using EqVector = GetPropType; using RateVector = GetPropType; using Indices = GetPropType; using IntensiveQuantities = GetPropType; using ElementContext = GetPropType; enum { numPhases = getPropValue() }; enum { numComponents = getPropValue() }; enum { numEq = getPropValue() }; enum { conti0EqIdx = Indices::conti0EqIdx }; enum { enableDiffusion = getPropValue() }; using DiffusionModule = Opm::DiffusionModule; enum { enableEnergy = getPropValue() }; using EnergyModule = Opm::EnergyModule; using Toolbox = Opm::MathToolbox; public: /*! * \copydoc ImmiscibleLocalResidual::addPhaseStorage */ template void addPhaseStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx, unsigned phaseIdx) const { const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx); const auto& fs = intQuants.fluidState(); // compute storage term of all components within all phases for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { unsigned eqIdx = conti0EqIdx + compIdx; storage[eqIdx] += Toolbox::template decay(fs.molarity(phaseIdx, compIdx)) * Toolbox::template decay(fs.saturation(phaseIdx)) * Toolbox::template decay(intQuants.porosity()); } EnergyModule::addPhaseStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx), phaseIdx); } /*! * \copydoc ImmiscibleLocalResidual::computeStorage */ template void computeStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { storage = 0.0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx); EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx)); } /*! * \copydoc ImmiscibleLocalResidual::computeFlux */ void computeFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { flux = 0.0; addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx); Opm::Valgrind::CheckDefined(flux); addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); Opm::Valgrind::CheckDefined(flux); } /*! * \copydoc ImmiscibleLocalResidual::addAdvectiveFlux */ void addAdvectiveFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); unsigned focusDofIdx = elemCtx.focusDofIndex(); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { // data attached to upstream and the downstream DOFs // of the current phase unsigned upIdx = static_cast(extQuants.upstreamIndex(phaseIdx)); const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx); // this is a bit hacky because it is specific to the element-centered // finite volume scheme. (N.B. that if finite differences are used to // linearize the system of equations, it does not matter.) if (upIdx == focusDofIdx) { Evaluation tmp = up.fluidState().molarDensity(phaseIdx) * extQuants.volumeFlux(phaseIdx); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { flux[conti0EqIdx + compIdx] += tmp*up.fluidState().moleFraction(phaseIdx, compIdx); } } else { Evaluation tmp = Toolbox::value(up.fluidState().molarDensity(phaseIdx)) * extQuants.volumeFlux(phaseIdx); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { flux[conti0EqIdx + compIdx] += tmp*Toolbox::value(up.fluidState().moleFraction(phaseIdx, compIdx)); } } } EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \copydoc ImmiscibleLocalResidual::addDiffusiveFlux */ void addDiffusiveFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \copydoc ImmiscibleLocalResidual::computeSource */ void computeSource(RateVector& source, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { Opm::Valgrind::SetUndefined(source); elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx); Opm::Valgrind::CheckDefined(source); } }; } // namespace Opm #endif