/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifdef HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; OpmLog::setupSimpleDefaultLogging(false, true, 10); std::cout << "\n================ Test program for incompressible two-phase flow with polymer ===============\n\n"; ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); Deck deck; boost::scoped_ptr grid; boost::scoped_ptr props; boost::scoped_ptr rock_comp; std::shared_ptr< EclipseState > eclipseState; std::shared_ptr schedule; std::unique_ptr state; Opm::PolymerProperties poly_props; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; if (use_deck) { std::string deck_filename = param.get("deck_filename"); Opm::ParseContext parseContext({{ ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }}); Parser parser; deck = parser.parseFile(deck_filename , parseContext); eclipseState.reset(new Opm::EclipseState(deck , parseContext)); schedule.reset( new Opm::Schedule(deck, eclipseState->getInputGrid(), eclipseState->get3DProperties(), eclipseState->runspec().phases(), parseContext)); // Grid init grid.reset(new GridManager(eclipseState->getInputGrid())); { const UnstructuredGrid& ug_grid = *(grid->c_grid()); // Rock and fluid init props.reset(new IncompPropertiesFromDeck(deck, *eclipseState, ug_grid )); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); state.reset( new PolymerState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ), 2)); // Rock compressibility. rock_comp.reset(new RockCompressibility(*eclipseState)); // Gravity. gravity[2] = deck.hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(ug_grid, *props, param, gravity[2], *state); } else { initStateFromDeck(ug_grid, *props, deck, gravity[2], *state); } // Init polymer properties. poly_props.readFromDeck(deck, *eclipseState); } } else { // Grid init. const int nx = param.getDefault("nx", 100); const int ny = param.getDefault("ny", 100); const int nz = param.getDefault("nz", 1); const double dx = param.getDefault("dx", 1.0); const double dy = param.getDefault("dy", 1.0); const double dz = param.getDefault("dz", 1.0); grid.reset(new GridManager(nx, ny, nz, dx, dy, dz)); { const UnstructuredGrid& ug_grid = *(grid->c_grid()); // Rock and fluid init. props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));; state.reset( new PolymerState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ) , 2)); // Rock compressibility. rock_comp.reset(new RockCompressibility(param)); // Gravity. gravity[2] = param.getDefault("gravity", 0.0); // Init state variables (saturation and pressure). initStateBasic(ug_grid, *props, param, gravity[2], *state); // Init Polymer state if (param.has("poly_init")) { double poly_init = param.getDefault("poly_init", 0.0); for (int cell = 0; cell < UgGridHelpers::numCells( ug_grid ); ++cell) { double smin[2], smax[2]; auto& saturation = state->saturation(); auto& concentration = state->getCellData( state->CONCENTRATION ); auto& max_concentration = state->getCellData( state->CMAX ); props->satRange(1, &cell, smin, smax); if (saturation[2*cell] > 0.5*(smin[0] + smax[0])) { concentration[cell] = poly_init; max_concentration[cell] = poly_init; } else { saturation[2*cell + 0] = 0.; saturation[2*cell + 1] = 1.; concentration[cell] = 0.; max_concentration[cell] = 0.; } } } } // Init polymer properties. // Setting defaults to provide a simple example case. double c_max = param.getDefault("c_max_limit", 5.0); double mix_param = param.getDefault("mix_param", 1.0); double rock_density = param.getDefault("rock_density", 1000.0); double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15); double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability double c_max_ads = param.getDefault("c_max_ads", 1.); int ads_index = param.getDefault("ads_index", Opm::PolymerProperties::NoDesorption); std::vector c_vals_visc(2, -1e100); c_vals_visc[0] = 0.0; c_vals_visc[1] = 7.0; std::vector visc_mult_vals(2, -1e100); visc_mult_vals[0] = 1.0; // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0); visc_mult_vals[1] = 20.0; std::vector c_vals_ads(3, -1e100); c_vals_ads[0] = 0.0; c_vals_ads[1] = 2.0; c_vals_ads[2] = 8.0; std::vector ads_vals(3, -1e100); ads_vals[0] = 0.0; ads_vals[1] = 0.0015; ads_vals[2] = 0.0025; // ads_vals[1] = 0.0; // ads_vals[2] = 0.0; std::vector water_vel_vals(2, -1e100); water_vel_vals[0] = 0.0; water_vel_vals[1] = 10.0; std::vector shear_vrf_vals(2, -1e100); shear_vrf_vals[0] = 1.0; shear_vrf_vals[1] = 1.0; poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads, static_cast(ads_index), c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals, water_vel_vals, shear_vrf_vals); } // Warn if gravity but no density difference. bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); if (use_gravity) { if (props->density()[0] == props->density()[1]) { std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl; } } const double *grav = use_gravity ? &gravity[0] : 0; // Initialising src int num_cells = grid->c_grid()->number_of_cells; std::vector src(num_cells, 0.0); if (use_deck) { // Do nothing, wells will be the driving force, not source terms. } else { // Compute pore volumes, in order to enable specifying injection rate // terms of total pore volume. std::vector porevol; if (rock_comp->isActive()) { computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol); } else { computePorevolume(*grid->c_grid(), props->porosity(), porevol); } const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0); const double default_injection = use_gravity ? 0.0 : 0.1; const double flow_per_sec = param.getDefault("injected_porevolumes_per_day", default_injection) *tot_porevol_init/unit::day; src[0] = flow_per_sec; src[num_cells - 1] = -flow_per_sec; } // Boundary conditions. FlowBCManager bcs; if (param.getDefault("use_pside", false)) { int pside = param.get("pside"); double pside_pressure = param.get("pside_pressure"); bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure); } // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); if (output) { std::string output_dir = param.getDefault("output_dir", std::string("output")); ensureDirectoryExists(output_dir); param.writeParam(output_dir + "/simulation.param"); } std::cout << "\n\n================ Starting main simulation loop ===============\n" << std::flush; SimulatorReport rep; if (!use_deck) { // Simple simulation without a deck. PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day, param.getDefault("poly_end_days", 800.0)*Opm::unit::day, param.getDefault("poly_amount", poly_props.cMax())); WellsManager wells; SimulatorPolymer simulator(param, *grid->c_grid(), *props, poly_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, polymer_inflow, src, bcs.c_bcs(), linsolver, grav); SimulatorTimer simtimer; simtimer.init(param); warnIfUnusedParams(param); WellState well_state; well_state.init(0, *state); rep = simulator.run(simtimer, *state, well_state); } else { // With a deck, we may have more epochs etc. WellState well_state; int step = 0; const auto& timeMap = schedule->getTimeMap(); SimulatorTimer simtimer; simtimer.init(timeMap); // Check for WPOLYMER presence in last epoch to decide // polymer injection control type. const bool use_wpolymer = deck.hasKeyword("WPOLYMER"); if (use_wpolymer) { if (param.has("poly_start_days")) { OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. " "You seem to be trying to control it via parameter poly_start_days (etc.) as well."); } } for (size_t reportStepIdx = 0; reportStepIdx < timeMap.numTimesteps(); ++reportStepIdx) { simtimer.setCurrentStepNum(reportStepIdx); // Report on start of report step. std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------" << "\n (number of remaining steps: " << simtimer.numSteps() - step << ")\n\n" << std::flush; // Create new wells, polymer inflow controls. WellsManager wells(*eclipseState , *schedule, reportStepIdx , *grid->c_grid()); boost::scoped_ptr polymer_inflow; if (use_wpolymer) { if (wells.c_wells() == 0) { OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells."); } polymer_inflow.reset(new PolymerInflowFromDeck(*schedule, *wells.c_wells(), props->numCells(), simtimer.currentStepNum())); } else { polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day, param.getDefault("poly_end_days", 800.0)*Opm::unit::day, param.getDefault("poly_amount", poly_props.cMax()))); } // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every report step, // since number of wells may change etc. if (reportStepIdx == 0) { well_state.init(wells.c_wells(), *state); } // Create and run simulator. SimulatorPolymer simulator(param, *grid->c_grid(), *props, poly_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, *polymer_inflow, src, bcs.c_bcs(), linsolver, grav); if (reportStepIdx == 0) { warnIfUnusedParams(param); } SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state); // Update total timing report and remember step number. rep += epoch_rep; step = simtimer.currentStepNum(); } } std::cout << "\n\n================ End of simulation ===============\n\n"; rep.report(std::cout); } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }