/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Statoil ASA.
Copyright 2017, IRIS
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/**
* \file
* Facility for converting component rates at surface conditions to
* phase (voidage) rates at reservoir conditions.
*
* This uses the average hydrocarbon pressure to define fluid
* properties. The facility is intended to support Reservoir Voidage
* rates only ('RESV').
*/
namespace Opm {
namespace RateConverter {
/**
* Convert component rates at surface conditions to phase
* (voidage) rates at reservoir conditions.
*
* The conversion uses fluid properties evaluated at average
* hydrocarbon pressure in regions or field.
*
* \tparam FluidSystem Fluid system class. Expected to be a
* BlackOilFluidSystem
*
* \tparam Region Type of a forward region mapping. Expected to
* provide indexed access through \code operator[]() \endcode as
* well as inner types \c value_type, \c size_type, and \c
* const_iterator. Typically \code std::vector \endcode.
*/
template
class SurfaceToReservoirVoidage {
public:
/**
* Constructor.
*
* \param[in] region Forward region mapping. Often corresponds
* to the "FIPNUM" mapping of an ECLIPSE input deck.
*/
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
const Region& region)
: phaseUsage_(phaseUsage)
, rmap_ (region)
, attr_ (rmap_, Attributes())
{}
/**
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
*
* Fluid properties are evaluated at average hydrocarbon
* state for purpose of conversion from surface rate to
* reservoir voidage rate.
*
*/
template
void defineState(const Simulator& simulator)
{
// create map from cell to region and set all attributes to
// zero
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
ra.pressure = 0.0;
ra.temperature = 0.0;
ra.rs = 0.0;
ra.rv = 0.0;
ra.pv = 0.0;
ra.saltConcentration = 0.0;
ra.rsw = 0.0;
ra.rvw = 0.0;
}
// quantities for pore volume average
std::unordered_map attributes_pv;
// quantities for hydrocarbon volume average
std::unordered_map attributes_hpv;
for (const auto& reg : rmap_.activeRegions()) {
attributes_pv.insert({reg, Attributes()});
attributes_hpv.insert({reg, Attributes()});
}
ElementContext elemCtx( simulator );
const auto& gridView = simulator.gridView();
const auto& comm = gridView.comm();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
// use pore volume weighted averages.
const double pv_cell =
simulator.model().dofTotalVolume(cellIdx)
* intQuants.porosity().value();
// only count oil and gas filled parts of the domain
double hydrocarbon = 1.0;
const auto& pu = phaseUsage_;
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
}
const int reg = rmap_.region(cellIdx);
assert(reg >= 0);
// sum p, rs, rv, and T.
const double hydrocarbonPV = pv_cell*hydrocarbon;
if (hydrocarbonPV > 0.) {
auto& attr = attributes_hpv[reg];
attr.pv += hydrocarbonPV;
if (RegionAttributeHelpers::PhaseUsed::oil(pu) && RegionAttributeHelpers::PhaseUsed::gas(pu)) {
attr.rs += fs.Rs().value() * hydrocarbonPV;
attr.rv += fs.Rv().value() * hydrocarbonPV;
}
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
} else {
assert(RegionAttributeHelpers::PhaseUsed::gas(pu));
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
}
attr.saltConcentration += fs.saltConcentration().value() * hydrocarbonPV;
if (FluidSystem::enableDissolvedGasInWater()) {
attr.rsw += fs.Rsw().value() * hydrocarbonPV; // scale with total volume?
}
if (FluidSystem::enableVaporizedWater()) {
attr.rvw += fs.Rvw().value() * hydrocarbonPV; // scale with total volume?
}
}
if (pv_cell > 0.) {
auto& attr = attributes_pv[reg];
attr.pv += pv_cell;
if (RegionAttributeHelpers::PhaseUsed::oil(pu) && RegionAttributeHelpers::PhaseUsed::gas(pu)) {
attr.rs += fs.Rs().value() * pv_cell;
attr.rv += fs.Rv().value() * pv_cell;
}
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * pv_cell;
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * pv_cell;
} else if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * pv_cell;
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * pv_cell;
} else {
assert(RegionAttributeHelpers::PhaseUsed::water(pu));
attr.pressure += fs.pressure(FluidSystem::waterPhaseIdx).value() * pv_cell;
attr.temperature += fs.temperature(FluidSystem::waterPhaseIdx).value() * pv_cell;
}
attr.saltConcentration += fs.saltConcentration().value() * pv_cell;
if (FluidSystem::enableDissolvedGasInWater()) {
attr.rsw += fs.Rsw().value() * pv_cell;
}
if (FluidSystem::enableVaporizedWater()) {
attr.rvw += fs.Rvw().value() * pv_cell;
}
}
}
OPM_END_PARALLEL_TRY_CATCH("SurfaceToReservoirVoidage::defineState() failed: ", simulator.vanguard().grid().comm());
this->sumRates(attributes_hpv,
attributes_pv,
comm);
}
/**
* Region identifier.
*
* Integral type.
*/
using RegionId = typename RegionMapping::RegionId;
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion.
*
* \tparam Input Type representing contiguous collection
* of component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \tparam Coeff Type representing contiguous collection
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
*
*
* \param[out] coeff Surface-to-reservoir conversion
* coefficients that can be used to compute total reservoir
* volumes from surface volumes with the formula
* q_{rT} = \sum_p coeff[p] q_{sp}.
* However, individual phase reservoir volumes cannot be calculated from
* these coefficients (i.e. q_{rp} is not equal to coeff[p] q_{sp})
* since they can depend on more than one surface volume rate when
* we have dissolved gas or vaporized oil.
*/
template
void
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const;
template
void
calcCoeff(const RegionId r, const int pvtRegionIdx, const Rates& surface_rates, Coeff& coeff) const;
template
void
calcCoeff( const int pvtRegionIdx,
const double p,
const double rs,
const double rv,
const double rsw,
const double rvw,
const double T,
const double saltConcentration,
Coeff& coeff) const;
template
void
calcInjCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const;
/**
* Convert surface volume flow rates to reservoir voidage flow
* rates.
*
* State dependent version. Client must call \code
* defineState() \endcode prior to invoking this member
* function.
*
* \tparam Rates Type representing contiguous collection of
* surface flow rates. Must support direct indexing through
* \code operator[]() \endcode.
*
* \param[in] r Zero based fluid-in-place region index.
*
* \param[in] pvtRegionIdx Zero based PVT region index.
*
* \param[in] surface_rates surface volume flow rates for all
* active phases.
*
* \param[out] voidage_rates reservoir volume flow rates for all
* active phases.
*/
template
void calcReservoirVoidageRates(const RegionId r,
const int pvtRegionIdx,
const Rates& surface_rates,
Rates& voidage_rates) const;
/**
* Convert surface volume flow rates to reservoir voidage flow
* rates.
*
* State independent version.
*
* \tparam Rates Type representing contiguous collection of
* surface flow rates. Must support direct indexing through
* \code operator[]() \endcode.
*
* \param[in] pvtRegionIdx PVT region.
*
* \param[in] p Fluid pressure.
*
* \param[in] rs Dissolved gas/oil ratio.
*
* \param[in] rv Vaporised oil/gas ratio.
*
* \param[in] rsw Dissolved gas/water ratio.
*
* \param[in] rwv Vaporised water/gas ratio.
*
* \param[in] T Temperature. Unused in non-thermal simulation
* runs.
*
* \param[in] saltConcentration Salt concentration. Unused in
* simulation runs without salt precipitation.
*
* \param[in] surface_rates Surface volume flow rates for all
* active phases.
*
* \param[out] voidage_rates Reservoir volume flow rates for all
* active phases.
*/
template
void calcReservoirVoidageRates(const int pvtRegionIdx,
const double p,
const double rs,
const double rv,
const double rsw,
const double rvw,
const double T,
const double saltConcentration,
const SurfaceRates& surface_rates,
VoidageRates& voidage_rates) const;
template
std::pair
inferDissolvedVaporisedRatio(const double rsMax,
const double rvMax,
const Rates& surface_rates) const;
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion for solvent.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
*
*
* \param[out] double Surface-to-reservoir conversion
* coefficients for solvent.
*/
template
void
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
{
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const auto& solventPvt = SolventModule::solventPvt();
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
coeff = 1.0 / bs;
}
private:
/**
* Fluid property object.
*/
const PhaseUsage phaseUsage_;
/**
* "Fluid-in-place" region mapping (forward and reverse).
*/
const RegionMapping rmap_;
/**
* Derived property attributes for each active region.
*/
struct Attributes {
Attributes()
: data{0.0}
, pressure(data[0])
, temperature(data[1])
, rs(data[2])
, rv(data[3])
, rsw(data[4])
, rvw(data[5])
, pv(data[6])
, saltConcentration(data[7])
{}
Attributes(const Attributes& rhs)
: Attributes()
{
this->data = rhs.data;
}
Attributes& operator=(const Attributes& rhs)
{
this->data = rhs.data;
return *this;
}
std::array data;
double& pressure;
double& temperature;
double& rs;
double& rv;
double& rsw;
double& rvw;
double& pv;
double& saltConcentration;
};
void sumRates(std::unordered_map& attributes_hpv,
std::unordered_map& attributes_pv,
Parallel::Communication comm);
RegionAttributeHelpers::RegionAttributes attr_;
};
} // namespace RateConverter
} // namespace Opm
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */