/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
class AquiferCarterTracy : public AquiferAnalytical
{
public:
using Base = AquiferAnalytical;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
AquiferCarterTracy(const std::vector& connections,
const Simulator& ebosSimulator,
const AquiferCT::AQUCT_data& aquct_data)
: Base(aquct_data.aquiferID, connections, ebosSimulator)
, aquct_data_(aquct_data)
{}
static AquiferCarterTracy serializationTestObject(const Simulator& ebosSimulator)
{
AquiferCarterTracy result({}, ebosSimulator, {});
result.pressure_previous_ = {1.0, 2.0, 3.0};
result.pressure_current_ = {4.0, 5.0};
result.Qai_ = {{6.0}};
result.rhow_ = 7.0;
result.W_flux_ = 8.0;
result.fluxValue_ = 9.0;
result.dimensionless_time_ = 10.0;
result.dimensionless_pressure_ = 11.0;
return result;
}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
}
this->fluxValue_ = this->W_flux_.value();
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&this->fluxValue_, 1);
}
data::AquiferData aquiferData() const override
{
data::AquiferData data;
data.aquiferID = this->aquiferID();
// TODO: not sure how to get this pressure value yet
data.pressure = this->pa0_;
data.fluxRate = 0.;
for (const auto& q : this->Qai_) {
data.fluxRate += q.value();
}
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
auto* aquCT = data.typeData.template create();
aquCT->dimensionless_time = this->dimensionless_time_;
aquCT->dimensionless_pressure = this->dimensionless_pressure_;
aquCT->influxConstant = this->aquct_data_.influxConstant();
if (!this->co2store_()) {
aquCT->timeConstant = this->aquct_data_.timeConstant();
aquCT->waterDensity = this->aquct_data_.waterDensity();
aquCT->waterViscosity = this->aquct_data_.waterViscosity();
} else {
aquCT->waterDensity = this->rhow_;
aquCT->timeConstant = this->Tc_;
const auto x = this->aquct_data_.porosity * this->aquct_data_.total_compr * this->aquct_data_.inner_radius * this->aquct_data_.inner_radius;
aquCT->waterViscosity = this->Tc_ * this->aquct_data_.permeability / x;
}
return data;
}
template
void serializeOp(Serializer& serializer)
{
serializer(static_cast(*this));
serializer(fluxValue_);
serializer(dimensionless_time_);
serializer(dimensionless_pressure_);
}
bool operator==(const AquiferCarterTracy& rhs) const
{
return static_cast&>(*this) == rhs &&
this->fluxValue_ == rhs.fluxValue_ &&
this->dimensionless_time_ == rhs.dimensionless_time_ &&
this->dimensionless_pressure_ == rhs.dimensionless_pressure_;
}
protected:
// Variables constants
AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
// TODO: it is possible it should be a AD variable
Scalar fluxValue_{0}; // value of flux
Scalar dimensionless_time_{0};
Scalar dimensionless_pressure_{0};
void assignRestartData(const data::AquiferData& xaq) override
{
this->fluxValue_ = xaq.volume;
this->rhow_ = this->aquct_data_.waterDensity();
}
std::pair
getInfluenceTableValues(const Scalar td_plus_dt)
{
// We use the opm-common numeric linear interpolator
this->dimensionless_pressure_ =
linearInterpolation(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
this->dimensionless_time_);
const auto PItd =
linearInterpolation(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
td_plus_dt);
const auto PItdprime =
linearInterpolationDerivative(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
td_plus_dt);
return std::make_pair(PItd, PItdprime);
}
Scalar dpai(const int idx) const
{
const auto gdz =
this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth());
const auto dp = this->pa0_ + this->rhow_*gdz
- this->pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
std::pair
calculateEqnConstants(const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
this->dimensionless_time_ = simulator.time() / this->Tc_;
const auto [PItd, PItdprime] = this->getInfluenceTableValues(td_plus_dt);
const auto denom = this->Tc_ * (PItd - this->dimensionless_time_*PItdprime);
const auto a = (this->beta_*dpai(idx) - this->fluxValue_*PItdprime) / denom;
const auto b = this->beta_ / denom;
return std::make_pair(a, b);
}
std::size_t pvtRegionIdx() const
{
return this->aquct_data_.pvttableID - 1;
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
void calculateInflowRate(int idx, const Simulator& simulator) override
{
const auto [a, b] = this->calculateEqnConstants(idx, simulator);
this->Qai_.at(idx) = this->alphai_.at(idx) *
(a - b*(this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
}
void calculateAquiferConstants() override
{
this->Tc_ = this->co2store_()
? this->timeConstantCO2Store()
: this->aquct_data_.timeConstant();
this->beta_ = this->aquct_data_.influxConstant();
}
void calculateAquiferCondition() override
{
if (this->solution_set_from_restart_) {
return;
}
if (! this->aquct_data_.initial_pressure.has_value()) {
this->aquct_data_.initial_pressure =
this->calculateReservoirEquilibrium();
const auto& tables = this->ebos_simulator_.vanguard()
.eclState().getTableManager();
this->aquct_data_.finishInitialisation(tables);
}
this->pa0_ = this->aquct_data_.initial_pressure.value();
if (this->aquct_data_.initial_temperature.has_value()) {
this->Ta0_ = this->aquct_data_.initial_temperature.value();
}
this->rhow_ = this->co2store_()
? this->waterDensityCO2Store()
: this->aquct_data_.waterDensity();
}
Scalar aquiferDepth() const override
{
return this->aquct_data_.datum_depth;
}
private:
Scalar timeConstantCO2Store() const
{
const auto press = this->aquct_data_.initial_pressure.value();
const auto temp = this->reservoirTemperatureCO2Store();
auto waterViscosity = Scalar { 0 };
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const auto rs = Scalar { 0 }; // no dissolved CO2
waterViscosity = FluidSystem::oilPvt()
.viscosity(pvtRegionIdx(), temp, press, rs);
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const auto salt = Scalar { 0 };
const auto rsw = Scalar { 0 };
waterViscosity = FluidSystem::waterPvt()
.viscosity(pvtRegionIdx(), temp, press, rsw, salt);
}
else {
OPM_THROW(std::runtime_error, "water or oil phase is needed to run CO2Store.");
}
const auto x = this->aquct_data_.porosity * this->aquct_data_.total_compr
* this->aquct_data_.inner_radius * this->aquct_data_.inner_radius;
return waterViscosity * x / this->aquct_data_.permeability;
}
Scalar waterDensityCO2Store() const
{
const auto press = this->aquct_data_.initial_pressure.value();
const auto temp = this->reservoirTemperatureCO2Store();
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const auto& pvt = FluidSystem::oilPvt();
const auto reg = this->pvtRegionIdx();
const auto rs = Scalar { 0 }; // no dissolved CO2
return pvt.inverseFormationVolumeFactor(reg, temp, press, rs)
* pvt.oilReferenceDensity(reg);
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const auto& pvt = FluidSystem::waterPvt();
const auto reg = this->pvtRegionIdx();
const auto salinity = Scalar { 0 };
const auto rsw = Scalar { 0 };
return pvt.inverseFormationVolumeFactor(reg, temp, press, rsw, salinity)
* pvt.waterReferenceDensity(reg);
}
else {
OPM_THROW(std::runtime_error, "water or oil phase is needed to run CO2Store.");
}
}
Scalar reservoirTemperatureCO2Store() const
{
return this->aquct_data_.initial_temperature.has_value()
? this->aquct_data_.initial_temperature.value()
: FluidSystem::reservoirTemperature();
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif