/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include // Helper structs and functions for the implementation. namespace { struct WellData { WellType type; // WellControlType control; // double target; double reference_bhp_depth; // Opm::InjectionSpecification::InjectorType injected_phase; }; struct PerfData { int cell; double well_index; }; namespace ProductionControl { enum Mode { ORAT, WRAT, GRAT, LRAT, CRAT, RESV, BHP, THP, GRUP }; Mode mode(const std::string& control) { const int num_prod_control_modes = 9; static std::string prod_control_modes[num_prod_control_modes] = {std::string("ORAT"), std::string("WRAT"), std::string("GRAT"), std::string("LRAT"), std::string("CRAT"), std::string("RESV"), std::string("BHP"), std::string("THP"), std::string("GRUP") }; int m = -1; for (int i=0; i= 0) { return static_cast(m); } else { THROW("Unknown well control mode = " << control << " in input file"); } } } // namespace ProductionControl namespace InjectionControl { enum Mode { RATE, RESV, BHP, THP, GRUP }; Mode mode(const std::string& control) { const int num_inje_control_modes = 5; static std::string inje_control_modes[num_inje_control_modes] = {std::string("RATE"), std::string("RESV"), std::string("BHP"), std::string("THP"), std::string("GRUP") }; int m = -1; for (int i=0; i= 0) { return static_cast(m); } else { THROW("Unknown well control mode = " << control << " in input file"); } } } // namespace InjectionControl std::tr1::array getCubeDim(const UnstructuredGrid& grid, int cell) { using namespace std; tr1::array cube; int num_local_faces = grid.cell_facepos[cell + 1] - grid.cell_facepos[cell]; vector x(num_local_faces); vector y(num_local_faces); vector z(num_local_faces); for (int lf=0; lf& cubical, const double* cell_permeability, const double skin_factor) { using namespace std; // sse: Using the Peaceman model. // NOTE: The formula is valid for cartesian grids, so the result can be a bit // (in worst case: there is no upper bound for the error) off the mark. const double permx = cell_permeability[0]; const double permy = cell_permeability[3*1 + 1]; double effective_perm = sqrt(permx*permy); // sse: The formula for r_0 can be found on page 39 of // "Well Models for Mimetic Finite Differerence Methods and Improved Representation // of Wells in Multiscale Methods" by Ingeborg Skjelkvåle Ligaarden. assert(permx > 0.0); assert(permy > 0.0); double kxoy = permx / permy; double kyox = permy / permx; double r0_denominator = pow(kyox, 0.25) + pow(kxoy, 0.25); double r0_numerator = sqrt((sqrt(kyox)*cubical[0]*cubical[0]) + (sqrt(kxoy)*cubical[1]*cubical[1])); assert(r0_denominator > 0.0); double r0 = 0.28 * r0_numerator / r0_denominator; assert(radius > 0.0); assert(r0 > 0.0); if (r0 < radius) { std::cout << "ERROR: Too big well radius detected."; std::cout << "Specified well radius is " << radius << " while r0 is " << r0 << ".\n"; } const long double two_pi = 6.2831853071795864769252867665590057683943387987502116419498; double wi_denominator = log(r0 / radius) + skin_factor; double wi_numerator = two_pi * cubical[2]; assert(wi_denominator > 0.0); double wi = effective_perm * wi_numerator / wi_denominator; assert(wi > 0.0); return wi; } } // anonymous namespace namespace Opm { /// Default constructor. WellsManager::WellsManager() : w_(0) { } /// Construct wells from deck. WellsManager::WellsManager(const Opm::EclipseGridParser& deck, const UnstructuredGrid& grid, const double* permeability) : w_(0) { if (grid.dimensions != 3) { THROW("We cannot initialize wells from a deck unless the corresponding grid is 3-dimensional."); } // NOTE: Implementation copied and modified from dune-porsol's class BlackoilWells. std::vector keywords; keywords.push_back("WELSPECS"); keywords.push_back("COMPDAT"); // keywords.push_back("WELTARG"); if (!deck.hasFields(keywords)) { MESSAGE("Missing well keywords in deck, initializing no wells."); return; } if (!(deck.hasField("WCONINJE") || deck.hasField("WCONPROD")) ) { THROW("Needed field is missing in file"); } // Obtain phase usage data. PhaseUsage pu = phaseUsageFromDeck(deck); // These data structures will be filled in this constructor, // then used to initialize the Wells struct. std::vector well_names; std::vector well_data; std::vector > wellperf_data; // For easy lookup: std::map well_names_to_index; // Get WELSPECS data const WELSPECS& welspecs = deck.getWELSPECS(); const int num_wells = welspecs.welspecs.size(); well_names.reserve(num_wells); well_data.reserve(num_wells); wellperf_data.resize(num_wells); for (int w = 0; w < num_wells; ++w) { well_names.push_back(welspecs.welspecs[w].name_); WellData wd; well_data.push_back(wd); well_names_to_index[welspecs.welspecs[w].name_] = w; well_data.back().reference_bhp_depth = welspecs.welspecs[w].datum_depth_BHP_; if (welspecs.welspecs[w].datum_depth_BHP_ < 0.0) { // Set refdepth to a marker value, will be changed // after getting perforation data to the centroid of // the cell of the top well perforation. well_data.back().reference_bhp_depth = -1e100; } } // global_cell is a map from compressed cells to Cartesian grid cells. // We must make the inverse lookup. const int* global_cell = grid.global_cell; const int* cpgdim = grid.cartdims; std::map cartesian_to_compressed; if (global_cell) { for (int i = 0; i < grid.number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(global_cell[i], i)); } } else { for (int i = 0; i < grid.number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(i, i)); } } // Get COMPDAT data const COMPDAT& compdat = deck.getCOMPDAT(); const int num_compdat = compdat.compdat.size(); for (int kw = 0; kw < num_compdat; ++kw) { // Extract well name, or the part of the well name that // comes before the '*'. std::string name = compdat.compdat[kw].well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } // Look for well with matching name. bool found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { // equal // Extract corresponding WELSPECS defintion for // purpose of default location specification. const WelspecsLine& wspec = welspecs.welspecs[wix]; // We have a matching name. int ix = compdat.compdat[kw].grid_ind_[0] - 1; int jy = compdat.compdat[kw].grid_ind_[1] - 1; int kz1 = compdat.compdat[kw].grid_ind_[2] - 1; int kz2 = compdat.compdat[kw].grid_ind_[3] - 1; if (ix < 0) { // Defaulted I location. Extract from WELSPECS. ix = wspec.I_ - 1; } if (jy < 0) { // Defaulted J location. Extract from WELSPECS. jy = wspec.J_ - 1; } if (kz1 < 0) { // Defaulted KZ1. Use top layer. kz1 = 0; } if (kz2 < 0) { // Defaulted KZ2. Use bottom layer. kz2 = cpgdim[2] - 1; } for (int kz = kz1; kz <= kz2; ++kz) { int cart_grid_indx = ix + cpgdim[0]*(jy + cpgdim[1]*kz); std::map::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx); if (cgit == cartesian_to_compressed.end()) { THROW("Cell with i,j,k indices " << ix << ' ' << jy << ' ' << kz << " not found in grid (well = " << name << ')'); } int cell = cgit->second; PerfData pd; pd.cell = cell; if (compdat.compdat[kw].connect_trans_fac_ > 0.0) { pd.well_index = compdat.compdat[kw].connect_trans_fac_; } else { double radius = 0.5*compdat.compdat[kw].diameter_; if (radius <= 0.0) { radius = 0.5*unit::feet; MESSAGE("**** Warning: Well bore internal radius set to " << radius); } std::tr1::array cubical = getCubeDim(grid, cell); const double* cell_perm = &permeability[grid.dimensions*grid.dimensions*cell]; pd.well_index = computeWellIndex(radius, cubical, cell_perm, compdat.compdat[kw].skin_factor_); } wellperf_data[wix].push_back(pd); } found = true; break; } } if (!found) { THROW("Undefined well name: " << compdat.compdat[kw].well_ << " in COMPDAT"); } } // Set up reference depths that were defaulted. Count perfs. int num_perfs = 0; ASSERT(grid.dimensions == 3); for (int w = 0; w < num_wells; ++w) { num_perfs += wellperf_data[w].size(); if (well_data[w].reference_bhp_depth == -1e100) { // It was defaulted. Set reference depth to minimum perforation depth. double min_depth = 1e100; int num_wperfs = wellperf_data[w].size(); for (int perf = 0; perf < num_wperfs; ++perf) { double depth = grid.cell_centroids[3*wellperf_data[w][perf].cell + 2]; min_depth = std::min(min_depth, depth); } well_data[w].reference_bhp_depth = min_depth; } } // Create the well data structures. w_ = create_wells(pu.num_phases, num_wells, num_perfs); if (!w_) { THROW("Failed creating Wells struct."); } // Classify wells if (deck.hasField("WCONINJE")) { const std::vector& lines = deck.getWCONINJE().wconinje; for (size_t i = 0 ; i < lines.size(); ++i) { const std::map::const_iterator it = well_names_to_index.find(lines[i].well_); if (it != well_names_to_index.end()) { const int well_index = it->second; well_data[well_index].type = INJECTOR; } else { THROW("Unseen well name: " << lines[i].well_ << " first seen in WCONINJE"); } } } if (deck.hasField("WCONPROD")) { const std::vector& lines = deck.getWCONPROD().wconprod; for (size_t i = 0; i < lines.size(); ++i) { const std::map::const_iterator it = well_names_to_index.find(lines[i].well_); if (it != well_names_to_index.end()) { const int well_index = it->second; well_data[well_index].type = PRODUCER; } else { THROW("Unseen well name: " << lines[i].well_ << " first seen in WCONPROD"); } } } // Add wells. for (int w = 0; w < num_wells; ++w) { const int w_num_perf = wellperf_data[w].size(); std::vector perf_cells(w_num_perf); std::vector perf_prodind(w_num_perf); for (int perf = 0; perf < w_num_perf; ++perf) { perf_cells[perf] = wellperf_data[w][perf].cell; perf_prodind[perf] = wellperf_data[w][perf].well_index; } const double* comp_frac = NULL; // We initialize all wells with a null component fraction, // and must (for injection wells) overwrite it later. int ok = add_well(well_data[w].type, well_data[w].reference_bhp_depth, w_num_perf, comp_frac, &perf_cells[0], &perf_prodind[0], w_); if (!ok) { THROW("Failed adding well " << well_names[w] << " to Wells data structure."); } } // Get WCONINJE data, add injection controls to wells. if (deck.hasField("WCONINJE")) { const WCONINJE& wconinjes = deck.getWCONINJE(); const int num_wconinjes = wconinjes.wconinje.size(); for (int kw = 0; kw < num_wconinjes; ++kw) { const WconinjeLine& wci_line = wconinjes.wconinje[kw]; // Extract well name, or the part of the well name that // comes before the '*'. std::string name = wci_line.well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } bool well_found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { //equal well_found = true; ASSERT(well_data[wix].type == w_->type[wix]); if (well_data[wix].type != INJECTOR) { THROW("Found WCONINJE entry for a non-injector well: " << well_names[wix]); } // Add all controls that are present in well. int ok = 1; int control_pos[5] = { -1, -1, -1, -1, -1 }; if (ok && wci_line.surface_flow_max_rate_ >= 0.0) { control_pos[InjectionControl::RATE] = w_->ctrls[wix]->num; const double distr[3] = { 1.0, 1.0, 1.0 }; ok = append_well_controls(SURFACE_RATE, wci_line.surface_flow_max_rate_, distr, wix, w_); } if (ok && wci_line.reservoir_flow_max_rate_ >= 0.0) { control_pos[InjectionControl::RESV] = w_->ctrls[wix]->num; const double distr[3] = { 1.0, 1.0, 1.0 }; ok = append_well_controls(RESERVOIR_RATE, wci_line.reservoir_flow_max_rate_, distr, wix, w_); } if (ok && wci_line.BHP_limit_ > 0.0) { control_pos[InjectionControl::BHP] = w_->ctrls[wix]->num; ok = append_well_controls(BHP, wci_line.BHP_limit_, NULL, wix, w_); } if (ok && wci_line.THP_limit_ > 0.0) { THROW("We cannot handle THP limit for well " << well_names[wix]); } if (!ok) { THROW("Failure occured appending controls for well " << well_names[wix]); } InjectionControl::Mode mode = InjectionControl::mode(wci_line.control_mode_); const int cpos = control_pos[mode]; if (cpos == -1 && mode != InjectionControl::GRUP) { THROW("Control for " << wci_line.control_mode_ << " not specified in well " << well_names[wix]); } set_current_control(wix, cpos, w_); // Set well component fraction. double cf[3] = { 0.0, 0.0, 0.0 }; if (wci_line.injector_type_[0] == 'W') { if (!pu.phase_used[BlackoilPhases::Aqua]) { THROW("Water phase not used, yet found water-injecting well."); } cf[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0; } else if (wci_line.injector_type_[0] == 'O') { if (!pu.phase_used[BlackoilPhases::Liquid]) { THROW("Oil phase not used, yet found oil-injecting well."); } cf[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0; } else if (wci_line.injector_type_[0] == 'G') { if (!pu.phase_used[BlackoilPhases::Vapour]) { THROW("Water phase not used, yet found water-injecting well."); } cf[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0; } std::copy(cf, cf + pu.num_phases, w_->comp_frac + wix*pu.num_phases); } } if (!well_found) { THROW("Undefined well name: " << wci_line.well_ << " in WCONINJE"); } } } // Get WCONPROD data if (deck.hasField("WCONPROD")) { const WCONPROD& wconprods = deck.getWCONPROD(); const int num_wconprods = wconprods.wconprod.size(); for (int kw = 0; kw < num_wconprods; ++kw) { const WconprodLine& wcp_line = wconprods.wconprod[kw]; std::string name = wcp_line.well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } bool well_found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { //equal well_found = true; ASSERT(well_data[wix].type == w_->type[wix]); if (well_data[wix].type != PRODUCER) { THROW("Found WCONPROD entry for a non-producer well: " << well_names[wix]); } // Add all controls that are present in well. int control_pos[9] = { -1, -1, -1, -1, -1, -1, -1, -1, -1 }; int ok = 1; if (ok && wcp_line.oil_max_rate_ >= 0.0) { if (!pu.phase_used[BlackoilPhases::Liquid]) { THROW("Oil phase not active and ORAT control specified."); } control_pos[ProductionControl::ORAT] = w_->ctrls[wix]->num; double distr[3] = { 0.0, 0.0, 0.0 }; distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0; ok = append_well_controls(SURFACE_RATE, -wcp_line.oil_max_rate_, distr, wix, w_); } if (ok && wcp_line.water_max_rate_ >= 0.0) { if (!pu.phase_used[BlackoilPhases::Aqua]) { THROW("Water phase not active and WRAT control specified."); } control_pos[ProductionControl::WRAT] = w_->ctrls[wix]->num; double distr[3] = { 0.0, 0.0, 0.0 }; distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0; ok = append_well_controls(SURFACE_RATE, -wcp_line.water_max_rate_, distr, wix, w_); } if (ok && wcp_line.gas_max_rate_ >= 0.0) { if (!pu.phase_used[BlackoilPhases::Vapour]) { THROW("Gas phase not active and GRAT control specified."); } control_pos[ProductionControl::GRAT] = w_->ctrls[wix]->num; double distr[3] = { 0.0, 0.0, 0.0 }; distr[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0; ok = append_well_controls(SURFACE_RATE, -wcp_line.gas_max_rate_, distr, wix, w_); } if (ok && wcp_line.liquid_max_rate_ >= 0.0) { if (!pu.phase_used[BlackoilPhases::Aqua]) { THROW("Water phase not active and LRAT control specified."); } if (!pu.phase_used[BlackoilPhases::Liquid]) { THROW("Oil phase not active and LRAT control specified."); } control_pos[ProductionControl::LRAT] = w_->ctrls[wix]->num; double distr[3] = { 0.0, 0.0, 0.0 }; distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0; distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0; ok = append_well_controls(SURFACE_RATE, -wcp_line.liquid_max_rate_, distr, wix, w_); } if (ok && wcp_line.reservoir_flow_max_rate_ >= 0.0) { control_pos[ProductionControl::RESV] = w_->ctrls[wix]->num; double distr[3] = { 1.0, 1.0, 1.0 }; ok = append_well_controls(RESERVOIR_RATE, -wcp_line.reservoir_flow_max_rate_, distr, wix, w_); } if (ok && wcp_line.BHP_limit_ > 0.0) { control_pos[ProductionControl::BHP] = w_->ctrls[wix]->num; ok = append_well_controls(BHP, wcp_line.BHP_limit_, NULL, wix, w_); } if (ok && wcp_line.THP_limit_ > 0.0) { THROW("We cannot handle THP limit for well " << well_names[wix]); } if (!ok) { THROW("Failure occured appending controls for well " << well_names[wix]); } ProductionControl::Mode mode = ProductionControl::mode(wcp_line.control_mode_); const int cpos = control_pos[mode]; if (cpos == -1 && mode != ProductionControl::GRUP) { THROW("Control mode type " << mode << " not present in well " << well_names[wix]); } set_current_control(wix, cpos, w_); } } if (!well_found) { THROW("Undefined well name: " << wcp_line.well_ << " in WCONPROD"); } } } // Get WELTARG data if (deck.hasField("WELTARG")) { THROW("We currently do not handle WELTARG."); /* const WELTARG& weltargs = deck.getWELTARG(); const int num_weltargs = weltargs.weltarg.size(); for (int kw = 0; kw < num_weltargs; ++kw) { std::string name = weltargs.weltarg[kw].well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } bool well_found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { //equal well_found = true; well_data[wix].target = weltargs.weltarg[kw].new_value_; break; } } if (!well_found) { THROW("Undefined well name: " << weltargs.weltarg[kw].well_ << " in WELTARG"); } } */ } // Debug output. #define EXTRA_OUTPUT #ifdef EXTRA_OUTPUT /* std::cout << "\t WELL DATA" << std::endl; for(int i = 0; i< num_wells; ++i) { std::cout << i << ": " << well_data[i].type << " " << well_data[i].control << " " << well_data[i].target << std::endl; } std::cout << "\n\t PERF DATA" << std::endl; for(int i=0; i< int(wellperf_data.size()); ++i) { for(int j=0; j< int(wellperf_data[i].size()); ++j) { std::cout << i << ": " << wellperf_data[i][j].cell << " " << wellperf_data[i][j].well_index << std::endl; } } */ #endif // Build the well_collection_ well group hierarchy. if (deck.hasField("GRUPTREE")) { std::cout << "Found gruptree" << std::endl; const GRUPTREE& gruptree = deck.getGRUPTREE(); std::map::const_iterator it = gruptree.tree.begin(); for( ; it != gruptree.tree.end(); ++it) { well_collection_.addChild(it->first, it->second, deck); } } for (size_t i = 0; i < welspecs.welspecs.size(); ++i) { WelspecsLine line = welspecs.welspecs[i]; well_collection_.addChild(line.name_, line.group_, deck); } // Set the guide rates: if (deck.hasField("WGRUPCON")) { std::cout << "Found Wgrupcon" << std::endl; WGRUPCON wgrupcon = deck.getWGRUPCON(); const std::vector& lines = wgrupcon.wgrupcon; std::cout << well_collection_.getLeafNodes().size() << std::endl; for (size_t i = 0; i < lines.size(); i++) { std::string name = lines[i].well_; const int wix = well_names_to_index[name]; WellNode& wellnode = *well_collection_.getLeafNodes()[wix]; ASSERT(wellnode.name() == name); if (well_data[wix].type == PRODUCER) { wellnode.prodSpec().guide_rate_ = lines[i].guide_rate_; if (lines[i].phase_ == "OIL") { wellnode.prodSpec().guide_rate_type_ = ProductionSpecification::OIL; } else { THROW("Guide rate type " << lines[i].phase_ << " specified for producer " << name << " in WGRUPCON, cannot handle."); } } else if (well_data[wix].type == INJECTOR) { wellnode.injSpec().guide_rate_ = lines[i].guide_rate_; if (lines[i].phase_ == "RAT") { wellnode.injSpec().guide_rate_type_ = InjectionSpecification::RAT; } else { THROW("Guide rate type " << lines[i].phase_ << " specified for injector " << name << " in WGRUPCON, cannot handle."); } } else { THROW("Unknown well type " << well_data[wix].type << " for well " << name); } } } well_collection_.setWellsPointer(w_); well_collection_.applyGroupControls(); } /// Destructor. WellsManager::~WellsManager() { destroy_wells(w_); } /// Does the "deck" define any wells? bool WellsManager::empty() const { return (w_ == 0) || (w_->number_of_wells == 0); } /// Access the managed Wells. /// The method is named similarly to c_str() in std::string, /// to make it clear that we are returning a C-compatible struct. const Wells* WellsManager::c_wells() const { return w_; } const WellCollection& WellsManager::wellCollection() const { return well_collection_; } bool WellsManager::conditionsMet(const std::vector& well_bhp, const std::vector& well_reservoirrates_phase, const std::vector& well_surfacerates_phase) { return well_collection_.conditionsMet(well_bhp, well_reservoirrates_phase, well_surfacerates_phase); } /// Applies explicit reinjection controls. This must be called at each timestep to be correct. /// \param[in] well_reservoirrates_phase /// A vector containing reservoir rates by phase for each well. /// Is assumed to be ordered the same way as the related Wells-struct, /// with all phase rates of a single well adjacent in the array. /// \param[in] well_surfacerates_phase /// A vector containing surface rates by phase for each well. /// Is assumed to be ordered the same way as the related Wells-struct, /// with all phase rates of a single well adjacent in the array. void WellsManager::applyExplicitReinjectionControls(const std::vector& well_reservoirrates_phase, const std::vector& well_surfacerates_phase) { well_collection_.applyExplicitReinjectionControls(well_reservoirrates_phase, well_surfacerates_phase); } } // namespace Opm