/* Copyright 2019 SINTEF Digital, Mathematics and Cybernetics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED #define OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED #include #include #include #include #include #include namespace Dune { /// A solver class that encapsulates all needed objects for a linear solver /// (operator, scalar product, iterative solver and preconditioner) and sets /// them up based on runtime parameters, using the PreconditionerFactory for /// setting up preconditioners. template class FlexibleSolver : public Dune::InverseOperator { public: using MatrixType = MatrixTypeT; using VectorType = VectorTypeT; /// Create a sequential solver. FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix) { init(prm, matrix, Dune::Amg::SequentialInformation()); } /// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication). template FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix, const Comm& comm) { init(prm, matrix, comm); } virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override { linsolver_->apply(x, rhs, res); } virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override { linsolver_->apply(x, rhs, reduction, res); } /// Type of the contained preconditioner. using AbstractPrecondType = Dune::PreconditionerWithUpdate; /// Access the contained preconditioner. AbstractPrecondType& preconditioner() { return *preconditioner_; } virtual Dune::SolverCategory::Category category() const override { return linearoperator_->category(); } private: using AbstractOperatorType = Dune::AssembledLinearOperator; using AbstractScalarProductType = Dune::ScalarProduct; using AbstractSolverType = Dune::InverseOperator; // Machinery for making sequential or parallel operators/preconditioners/scalar products. template void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm, const Comm& comm) { // Parallel case. using ParOperatorType = Dune::OverlappingSchwarzOperator; auto linop = std::make_shared(matrix, comm); linearoperator_ = linop; preconditioner_ = Dune::PreconditionerFactory::create(*linop, prm.get_child("preconditioner"), comm); scalarproduct_ = Dune::createScalarProduct(comm, linearoperator_->category()); } void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm, const Dune::Amg::SequentialInformation&) { // Sequential case. using SeqOperatorType = Dune::MatrixAdapter; auto linop = std::make_shared(matrix); linearoperator_ = linop; preconditioner_ = Dune::PreconditionerFactory::create(*linop, prm.get_child("preconditioner")); scalarproduct_ = std::make_shared>(); } void initSolver(const boost::property_tree::ptree& prm) { const double tol = prm.get("tol"); const int maxiter = prm.get("maxiter"); const int verbosity = prm.get("verbosity"); const std::string solver_type = prm.get("solver"); if (solver_type == "bicgstab") { linsolver_.reset(new Dune::BiCGSTABSolver(*linearoperator_, *scalarproduct_, *preconditioner_, tol, // desired residual reduction factor maxiter, // maximum number of iterations verbosity)); } else if (solver_type == "loopsolver") { linsolver_.reset(new Dune::LoopSolver(*linearoperator_, *scalarproduct_, *preconditioner_, tol, // desired residual reduction factor maxiter, // maximum number of iterations verbosity)); } else if (solver_type == "gmres") { int restart = prm.get("restart"); linsolver_.reset(new Dune::RestartedGMResSolver(*linearoperator_, *scalarproduct_, *preconditioner_, tol, restart, // desired residual reduction factor maxiter, // maximum number of iterations verbosity)); #if HAVE_SUITESPARSE_UMFPACK } else if (solver_type == "umfpack") { bool dummy = false; linsolver_.reset(new Dune::UMFPack(linearoperator_->getmat(), verbosity, dummy)); #endif } else { std::string msg("Solver not known "); msg += solver_type; throw std::runtime_error(msg); } } // Main initialization routine. // Call with Comm == Dune::Amg::SequentialInformation to get a serial solver. template void init(const boost::property_tree::ptree& prm, const MatrixType& matrix, const Comm& comm) { initOpPrecSp(matrix, prm, comm); initSolver(prm); } std::shared_ptr linearoperator_; std::shared_ptr preconditioner_; std::shared_ptr scalarproduct_; std::shared_ptr linsolver_; }; } // namespace Dune #endif // OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED