/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_STANDARDWELL_HEADER_INCLUDED
#define OPM_STANDARDWELL_HEADER_INCLUDED
#include
#include
namespace Opm
{
template
class StandardWell: public WellInterface
{
public:
typedef WellInterface Base;
// TODO: some functions working with AD variables handles only with values (double) without
// dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value.
// And also, it can also be beneficial to make these functions hanle different types of AD variables.
using typename Base::Simulator;
using typename Base::WellState;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::MaterialLaw;
using typename Base::ModelParameters;
using typename Base::BlackoilIndices;
using typename Base::PolymerModule;
using Base::numEq;
// the positions of the primary variables for StandardWell
// there are three primary variables, the second and the third ones are F_w and F_g
// the first one can be total rate (G_t) or bhp, based on the control
static const bool gasoil = numEq == 2 && (BlackoilIndices::compositionSwitchIdx >= 0);
static const int XvarWell = 0;
static const int WFrac = gasoil? -1000: 1;
static const int GFrac = gasoil? 1: 2;
static const int SFrac = 3;
using typename Base::Scalar;
using typename Base::ConvergenceReport;
using Base::has_solvent;
using Base::has_polymer;
using Base::name;
using Base::Water;
using Base::Oil;
using Base::Gas;
// TODO: with flow_ebos,for a 2P deck, // TODO: for the 2p deck, numEq will be 3, a dummy phase is already added from the reservoir side.
// it will cause problem here without processing the dummy phase.
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq-1 : numEq; // number of wellEq is only numEq - 1 for polymer
using typename Base::Mat;
using typename Base::BVector;
using typename Base::Eval;
// sparsity pattern for the matrices
//[A C^T [x = [ res
// B D ] x_well] res_well]
// the vector type for the res_well and x_well
typedef Dune::FieldVector VectorBlockWellType;
typedef Dune::BlockVector BVectorWell;
#if DUNE_VERSION_NEWER_REV(DUNE_ISTL, 2 , 5, 1)
// 3x3 matrix block inversion was unstable from at least 2.3 until and
// including 2.5.0
// the matrix type for the diagonal matrix D
typedef Dune::FieldMatrix DiagMatrixBlockWellType;
#else
// the matrix type for the diagonal matrix D
typedef Dune::MatrixBlock DiagMatrixBlockWellType;
#endif
typedef Dune::BCRSMatrix DiagMatWell;
// the matrix type for the non-diagonal matrix B and C^T
typedef Dune::FieldMatrix OffDiagMatrixBlockWellType;
typedef Dune::BCRSMatrix OffDiagMatWell;
typedef DenseAd::Evaluation EvalWell;
// TODO: should these go to WellInterface?
static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx;
static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx;
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
static const int polymerConcentrationIdx = BlackoilIndices::polymerConcentrationIdx;
StandardWell(const Well* well, const int time_step, const Wells* wells, const ModelParameters& param);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector* active_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells);
virtual void initPrimaryVariablesEvaluation() const;
virtual void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells);
/// updating the well state based the control mode specified with current
// TODO: later will check wheter we need current
virtual void updateWellStateWithTarget(const int current,
WellState& xw) const;
/// check whether the well equations get converged for this well
virtual ConvergenceReport getWellConvergence(const std::vector& B_avg) const;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const;
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state) const;
/// computing the well potentials for group control
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& well_potentials) /* const */;
virtual void updatePrimaryVariables(const WellState& well_state) const;
virtual void solveEqAndUpdateWellState(WellState& well_state);
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state); // should be const?
protected:
// protected functions from the Base class
using Base::getAllowCrossFlow;
using Base::phaseUsage;
using Base::active;
using Base::flowPhaseToEbosPhaseIdx;
using Base::flowPhaseToEbosCompIdx;
using Base::numComponents;
using Base::wsolvent;
using Base::wpolymer;
using Base::wellHasTHPConstraints;
using Base::mostStrictBhpFromBhpLimits;
// protected member variables from the Base class
using Base::vfp_properties_;
using Base::gravity_;
using Base::param_;
using Base::well_efficiency_factor_;
using Base::first_perf_;
using Base::ref_depth_;
using Base::perf_depth_;
using Base::well_cells_;
using Base::number_of_perforations_;
using Base::number_of_phases_;
using Base::saturation_table_number_;
using Base::comp_frac_;
using Base::well_index_;
using Base::index_of_well_;
using Base::well_controls_;
using Base::well_type_;
using Base::perf_rep_radius_;
using Base::perf_length_;
using Base::bore_diameters_;
// densities of the fluid in each perforation
std::vector perf_densities_;
// pressure drop between different perforations
std::vector perf_pressure_diffs_;
// residuals of the well equations
BVectorWell resWell_;
// two off-diagonal matrices
OffDiagMatWell duneB_;
OffDiagMatWell duneC_;
// diagonal matrix for the well
DiagMatWell invDuneD_;
// several vector used in the matrix calculation
mutable BVectorWell Bx_;
mutable BVectorWell invDrw_;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
mutable std::vector primary_variables_;
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
mutable std::vector primary_variables_evaluation_;
// the saturations in the well bore under surface conditions at the beginning of the time step
std::vector F0_;
// TODO: this function should be moved to the base class.
// while it faces chanllenges for MSWell later, since the calculation of bhp
// based on THP is never implemented for MSWell yet.
EvalWell getBhp() const;
// TODO: it is also possible to be moved to the base class.
EvalWell getQs(const int comp_idx) const;
EvalWell wellVolumeFractionScaled(const int phase) const;
EvalWell wellVolumeFraction(const int phase) const;
EvalWell wellSurfaceVolumeFraction(const int phase) const;
EvalWell extendEval(const Eval& in) const;
bool crossFlowAllowed(const Simulator& ebosSimulator) const;
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
// updating the well_state based on well solution dwells
void updateWellState(const BVectorWell& dwells,
WellState& well_state) const;
// calculate the properties for the well connections
// to calulate the pressure difference between well connections.
void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector& b_perf,
std::vector& rsmax_perf,
std::vector& rvmax_perf,
std::vector& surf_dens_perf) const;
// TODO: not total sure whether it is a good idea to put this function here
// the major reason to put here is to avoid the usage of Wells struct
void computeConnectionDensities(const std::vector& perfComponentRates,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf);
void computeConnectionPressureDelta();
void computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf);
// computing the accumulation term for later use in well mass equations
void computeAccumWell();
void computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw);
// TODO: to check whether all the paramters are required
void computePerfRate(const IntensiveQuantities& intQuants,
const std::vector& mob_perfcells_dense,
const double Tw, const EvalWell& bhp, const double& cdp,
const bool& allow_cf, std::vector& cq_s) const;
// TODO: maybe we should provide a light version of computePerfRate, which does not include the
// calculation of the derivatives
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
const EvalWell& bhp,
std::vector& well_flux) const;
std::vector computeWellPotentialWithTHP(const Simulator& ebosSimulator,
const double initial_bhp, // bhp from BHP constraints
const std::vector& initial_potential) const;
template
ValueType calculateBhpFromThp(const std::vector& rates, const int control_index) const;
double calculateThpFromBhp(const std::vector& rates, const int control_index, const double bhp) const;
// get the mobility for specific perforation
void getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const;
double scalingFactor(const int comp_idx) const;
};
}
#include "StandardWell_impl.hpp"
#endif // OPM_STANDARDWELL_HEADER_INCLUDED