/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2016 - 2017 IRIS AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_STANDARDWELL_HEADER_INCLUDED #define OPM_STANDARDWELL_HEADER_INCLUDED #include #include namespace Opm { template class StandardWell: public WellInterface { public: typedef WellInterface Base; // TODO: some functions working with AD variables handles only with values (double) without // dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value. // And also, it can also be beneficial to make these functions hanle different types of AD variables. using typename Base::Simulator; using typename Base::WellState; using typename Base::IntensiveQuantities; using typename Base::FluidSystem; using typename Base::MaterialLaw; using typename Base::ModelParameters; using typename Base::BlackoilIndices; using typename Base::PolymerModule; using Base::numEq; // the positions of the primary variables for StandardWell // there are three primary variables, the second and the third ones are F_w and F_g // the first one can be total rate (G_t) or bhp, based on the control static const bool gasoil = numEq == 2 && (BlackoilIndices::compositionSwitchIdx >= 0); static const int XvarWell = 0; static const int WFrac = gasoil? -1000: 1; static const int GFrac = gasoil? 1: 2; static const int SFrac = 3; using typename Base::Scalar; using typename Base::ConvergenceReport; using Base::has_solvent; using Base::has_polymer; using Base::name; using Base::Water; using Base::Oil; using Base::Gas; // TODO: with flow_ebos,for a 2P deck, // TODO: for the 2p deck, numEq will be 3, a dummy phase is already added from the reservoir side. // it will cause problem here without processing the dummy phase. static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq-1 : numEq; // number of wellEq is only numEq - 1 for polymer using typename Base::Mat; using typename Base::BVector; using typename Base::Eval; // sparsity pattern for the matrices //[A C^T [x = [ res // B D ] x_well] res_well] // the vector type for the res_well and x_well typedef Dune::FieldVector VectorBlockWellType; typedef Dune::BlockVector BVectorWell; #if DUNE_VERSION_NEWER_REV(DUNE_ISTL, 2 , 5, 1) // 3x3 matrix block inversion was unstable from at least 2.3 until and // including 2.5.0 // the matrix type for the diagonal matrix D typedef Dune::FieldMatrix DiagMatrixBlockWellType; #else // the matrix type for the diagonal matrix D typedef Dune::MatrixBlock DiagMatrixBlockWellType; #endif typedef Dune::BCRSMatrix DiagMatWell; // the matrix type for the non-diagonal matrix B and C^T typedef Dune::FieldMatrix OffDiagMatrixBlockWellType; typedef Dune::BCRSMatrix OffDiagMatWell; typedef DenseAd::Evaluation EvalWell; // TODO: should these go to WellInterface? static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx; static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx; static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx; static const int polymerConcentrationIdx = BlackoilIndices::polymerConcentrationIdx; StandardWell(const Well* well, const int time_step, const Wells* wells, const ModelParameters& param); virtual void init(const PhaseUsage* phase_usage_arg, const std::vector* active_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells); virtual void initPrimaryVariablesEvaluation() const; virtual void assembleWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state, bool only_wells); /// updating the well state based the control mode specified with current // TODO: later will check wheter we need current virtual void updateWellStateWithTarget(const int current, WellState& xw) const; /// check whether the well equations get converged for this well virtual ConvergenceReport getWellConvergence(const std::vector& B_avg) const; /// Ax = Ax - C D^-1 B x virtual void apply(const BVector& x, BVector& Ax) const; /// r = r - C D^-1 Rw virtual void apply(BVector& r) const; /// using the solution x to recover the solution xw for wells and applying /// xw to update Well State virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state) const; /// computing the well potentials for group control virtual void computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials) /* const */; virtual void updatePrimaryVariables(const WellState& well_state) const; virtual void solveEqAndUpdateWellState(WellState& well_state); virtual void calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& well_state); // should be const? protected: // protected functions from the Base class using Base::getAllowCrossFlow; using Base::phaseUsage; using Base::active; using Base::flowPhaseToEbosPhaseIdx; using Base::flowPhaseToEbosCompIdx; using Base::numComponents; using Base::wsolvent; using Base::wpolymer; using Base::wellHasTHPConstraints; using Base::mostStrictBhpFromBhpLimits; // protected member variables from the Base class using Base::vfp_properties_; using Base::gravity_; using Base::param_; using Base::well_efficiency_factor_; using Base::first_perf_; using Base::ref_depth_; using Base::perf_depth_; using Base::well_cells_; using Base::number_of_perforations_; using Base::number_of_phases_; using Base::saturation_table_number_; using Base::comp_frac_; using Base::well_index_; using Base::index_of_well_; using Base::well_controls_; using Base::well_type_; using Base::perf_rep_radius_; using Base::perf_length_; using Base::bore_diameters_; // densities of the fluid in each perforation std::vector perf_densities_; // pressure drop between different perforations std::vector perf_pressure_diffs_; // residuals of the well equations BVectorWell resWell_; // two off-diagonal matrices OffDiagMatWell duneB_; OffDiagMatWell duneC_; // diagonal matrix for the well DiagMatWell invDuneD_; // several vector used in the matrix calculation mutable BVectorWell Bx_; mutable BVectorWell invDrw_; // the values for the primary varibles // based on different solutioin strategies, the wells can have different primary variables mutable std::vector primary_variables_; // the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation mutable std::vector primary_variables_evaluation_; // the saturations in the well bore under surface conditions at the beginning of the time step std::vector F0_; // TODO: this function should be moved to the base class. // while it faces chanllenges for MSWell later, since the calculation of bhp // based on THP is never implemented for MSWell yet. EvalWell getBhp() const; // TODO: it is also possible to be moved to the base class. EvalWell getQs(const int comp_idx) const; EvalWell wellVolumeFractionScaled(const int phase) const; EvalWell wellVolumeFraction(const int phase) const; EvalWell wellSurfaceVolumeFraction(const int phase) const; EvalWell extendEval(const Eval& in) const; bool crossFlowAllowed(const Simulator& ebosSimulator) const; // xw = inv(D)*(rw - C*x) void recoverSolutionWell(const BVector& x, BVectorWell& xw) const; // updating the well_state based on well solution dwells void updateWellState(const BVectorWell& dwells, WellState& well_state) const; // calculate the properties for the well connections // to calulate the pressure difference between well connections. void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator, const WellState& xw, std::vector& b_perf, std::vector& rsmax_perf, std::vector& rvmax_perf, std::vector& surf_dens_perf) const; // TODO: not total sure whether it is a good idea to put this function here // the major reason to put here is to avoid the usage of Wells struct void computeConnectionDensities(const std::vector& perfComponentRates, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf); void computeConnectionPressureDelta(); void computeWellConnectionDensitesPressures(const WellState& xw, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf); // computing the accumulation term for later use in well mass equations void computeAccumWell(); void computeWellConnectionPressures(const Simulator& ebosSimulator, const WellState& xw); // TODO: to check whether all the paramters are required void computePerfRate(const IntensiveQuantities& intQuants, const std::vector& mob_perfcells_dense, const double Tw, const EvalWell& bhp, const double& cdp, const bool& allow_cf, std::vector& cq_s) const; // TODO: maybe we should provide a light version of computePerfRate, which does not include the // calculation of the derivatives void computeWellRatesWithBhp(const Simulator& ebosSimulator, const EvalWell& bhp, std::vector& well_flux) const; std::vector computeWellPotentialWithTHP(const Simulator& ebosSimulator, const double initial_bhp, // bhp from BHP constraints const std::vector& initial_potential) const; template ValueType calculateBhpFromThp(const std::vector& rates, const int control_index) const; double calculateThpFromBhp(const std::vector& rates, const int control_index, const double bhp) const; // get the mobility for specific perforation void getMobility(const Simulator& ebosSimulator, const int perf, std::vector& mob) const; double scalingFactor(const int comp_idx) const; }; } #include "StandardWell_impl.hpp" #endif // OPM_STANDARDWELL_HEADER_INCLUDED