/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
bool WellConstraints::
checkIndividualConstraints(SingleWellState& ws,
const SummaryState& summaryState,
const RateConvFunc& calcReservoirVoidageRates,
bool& thp_limit_violated_but_not_switched,
DeferredLogger& deferred_logger,
const std::optional& inj_controls,
const std::optional& prod_controls) const
{
if (well_.isProducer()) {
auto new_cmode = this->activeProductionConstraint(ws, summaryState,
calcReservoirVoidageRates,
thp_limit_violated_but_not_switched,
deferred_logger,
prod_controls);
if (new_cmode != ws.production_cmode) {
ws.production_cmode = new_cmode;
return true;
}
}
if (well_.isInjector()) {
auto new_cmode = this->activeInjectionConstraint(ws, summaryState,
thp_limit_violated_but_not_switched,
deferred_logger,
inj_controls);
if (new_cmode != ws.injection_cmode) {
ws.injection_cmode = new_cmode;
return true;
}
}
return false;
}
Well::InjectorCMode WellConstraints::
activeInjectionConstraint(const SingleWellState& ws,
const SummaryState& summaryState,
bool& thp_limit_violated_but_not_switched,
DeferredLogger& deferred_logger,
const std::optional& inj_controls) const
{
const PhaseUsage& pu = well_.phaseUsage();
const auto controls = inj_controls.has_value() ? inj_controls.value() : well_.wellEcl().injectionControls(summaryState);
const auto currentControl = ws.injection_cmode;
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
{
const auto& bhp = controls.bhp_limit;
double current_bhp = ws.bhp;
if (bhp < current_bhp)
return Well::InjectorCMode::BHP;
}
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
{
InjectorType injectorType = controls.injector_type;
double current_rate = 0.0;
switch (injectorType) {
case InjectorType::WATER:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
break;
}
case InjectorType::OIL:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
break;
}
case InjectorType::GAS:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well_.name());
}
if (controls.surface_rate < current_rate)
return Well::InjectorCMode::RATE;
}
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
{
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.reservoir_rate < current_rate)
return Well::InjectorCMode::RESV;
}
// Note: we are not working on injecting network yet, so it is possible we need to change the following line
// to be as follows to incorporate the injecting network nodal pressure
// if (well_.wellHasTHPConstraints(summaryState) && currentControl != Well::InjectorCMode::THP)
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
{
const auto& thp = well_.getTHPConstraint(summaryState);
double current_thp = ws.thp;
if (thp < current_thp) {
bool rate_less_than_potential = true;
for (int p = 0; p < well_.numPhases(); ++p) {
// Currently we use the well potentials here computed before the iterations.
// We may need to recompute the well potentials to get a more
// accurate check here.
rate_less_than_potential = rate_less_than_potential && (ws.surface_rates[p]) <= ws.well_potentials[p];
}
if (!rate_less_than_potential) {
thp_limit_violated_but_not_switched = false;
return Well::InjectorCMode::THP;
} else {
thp_limit_violated_but_not_switched = true;
deferred_logger.debug("NOT_SWITCHING_TO_THP",
"The THP limit is violated for injector " +
well_.name() +
". But the rate will increase if switched to THP. " +
"The well is therefore kept at " + WellInjectorCMode2String(currentControl));
}
}
}
return currentControl;
}
Well::ProducerCMode WellConstraints::
activeProductionConstraint(const SingleWellState& ws,
const SummaryState& summaryState,
const RateConvFunc& calcReservoirVoidageRates,
bool& thp_limit_violated_but_not_switched,
DeferredLogger& deferred_logger,
const std::optional& prod_controls) const
{
const PhaseUsage& pu = well_.phaseUsage();
const auto controls = prod_controls.has_value() ? prod_controls.value() : well_.wellEcl().productionControls(summaryState);
const auto currentControl = ws.production_cmode;
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP) {
const double bhp_limit = controls.bhp_limit;
double current_bhp = ws.bhp;
if (bhp_limit > current_bhp)
return Well::ProducerCMode::BHP;
}
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
if (controls.oil_rate < current_rate)
return Well::ProducerCMode::ORAT;
}
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (controls.water_rate < current_rate)
return Well::ProducerCMode::WRAT;
}
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]];
if (controls.gas_rate < current_rate)
return Well::ProducerCMode::GRAT;
}
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
current_rate -= ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
bool skip = false;
if (controls.liquid_rate == controls.oil_rate) {
const double current_water_rate = ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (std::abs(current_water_rate) < 1e-12) {
skip = true;
deferred_logger.debug("LRAT_ORAT_WELL", "Well " + well_.name() + " The LRAT target is equal the ORAT target and the water rate is zero, skip checking LRAT");
}
}
if (!skip && controls.liquid_rate < current_rate)
return Well::ProducerCMode::LRAT;
}
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV) {
double current_rate = 0.0;
if (pu.phase_used[BlackoilPhases::Aqua])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (pu.phase_used[BlackoilPhases::Liquid])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]];
if (pu.phase_used[BlackoilPhases::Vapour])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]];
if (controls.prediction_mode && controls.resv_rate < current_rate)
return Well::ProducerCMode::RESV;
if (!controls.prediction_mode) {
const int fipreg = 0; // not considering the region for now
const int np = well_.numPhases();
std::vector surface_rates(np, 0.0);
if (pu.phase_used[BlackoilPhases::Aqua])
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
if (pu.phase_used[BlackoilPhases::Liquid])
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
if (pu.phase_used[BlackoilPhases::Vapour])
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
std::vector voidage_rates(np, 0.0);
calcReservoirVoidageRates(fipreg, well_.pvtRegionIdx(), surface_rates, voidage_rates);
double resv_rate = 0.0;
for (int p = 0; p < np; ++p)
resv_rate += voidage_rates[p];
if (resv_rate < current_rate)
return Well::ProducerCMode::RESV;
}
}
if (well_.wellHasTHPConstraints(summaryState) && currentControl != Well::ProducerCMode::THP) {
const auto& thp = well_.getTHPConstraint(summaryState);
double current_thp = ws.thp;
if (thp > current_thp && !ws.trivial_target) {
// If WVFPEXP item 4 is set to YES1 or YES2
// switching to THP is prevented if the well will
// produce at a higher rate with THP control
const auto& wvfpexp = well_.wellEcl().getWVFPEXP();
bool rate_less_than_potential = true;
if (wvfpexp.prevent()) {
for (int p = 0; p < well_.numPhases(); ++p) {
// Currently we use the well potentials here computed before the iterations.
// We may need to recompute the well potentials to get a more
// accurate check here.
rate_less_than_potential = rate_less_than_potential && (-ws.surface_rates[p]) <= ws.well_potentials[p];
}
}
if (!wvfpexp.prevent() || !rate_less_than_potential) {
thp_limit_violated_but_not_switched = false;
return Well::ProducerCMode::THP;
} else {
thp_limit_violated_but_not_switched = true;
deferred_logger.info("NOT_SWITCHING_TO_THP",
"The THP limit is violated for producer " +
well_.name() +
". But the rate will increase if switched to THP. " +
"The well is therefore kept at " + WellProducerCMode2String(currentControl));
}
}
}
return currentControl;
}
} // namespace Opm