/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3) #include #else #include #endif #if HAVE_DUNE_CORNERPOINT && WANT_DUNE_CORNERPOINTGRID #define USE_DUNE_CORNERPOINTGRID 1 #include #include #else #undef USE_DUNE_CORNERPOINTGRID #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Note: the GridHelpers must be included before this (to make overloads available). \TODO: Fix. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _OPENMP #include #endif #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; #if USE_DUNE_CORNERPOINTGRID // Must ensure an instance of the helper is created to initialise MPI. const Dune::MPIHelper& mpi_helper = Dune::MPIHelper::instance(argc, argv); const int mpi_rank = mpi_helper.rank(); const int mpi_size = mpi_helper.size(); #else // default values for serial run const int mpi_rank = 0; const int mpi_size = 1; #endif // Write parameters used for later reference. (only if rank is zero) const bool output_cout = ( mpi_rank == 0 ); if (output_cout) { std::string version = moduleVersionName(); std::cout << "**********************************************************************\n"; std::cout << "* *\n"; std::cout << "* This is Flow (version " << version << ")" << std::string(26 - version.size(), ' ') << "*\n"; std::cout << "* *\n"; std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n"; std::cout << "* and is part of OPM. For more information see: *\n"; std::cout << "* http://opm-project.org *\n"; std::cout << "* *\n"; std::cout << "**********************************************************************\n\n"; } #ifdef _OPENMP if (!getenv("OMP_NUM_THREADS")) { //Default to at most 4 threads, regardless of //number of cores (unless ENV(OMP_NUM_THREADS) is defined) int num_cores = omp_get_num_procs(); int num_threads = std::min(4, num_cores); omp_set_num_threads(num_threads); } #pragma omp parallel if (omp_get_thread_num() == 0){ //opm_get_num_threads() only works as expected within a parallel region. std::cout << "OpenMP using " << omp_get_num_threads() << " threads." << std::endl; } #endif // Read parameters, see if a deck was specified on the command line. if ( output_cout ) { std::cout << "--------------- Reading parameters ---------------" << std::endl; } parameter::ParameterGroup param(argc, argv, false, output_cout); if( !output_cout ) { param.disableOutput(); } if (!param.unhandledArguments().empty()) { if (param.unhandledArguments().size() != 1) { std::cerr << "You can only specify a single input deck on the command line.\n"; return EXIT_FAILURE; } else { param.insertParameter("deck_filename", param.unhandledArguments()[0]); } } // We must have an input deck. Grid and props will be read from that. if (!param.has("deck_filename")) { std::cerr << "This program must be run with an input deck.\n" "Specify the deck filename either\n" " a) as a command line argument by itself\n" " b) as a command line parameter with the syntax deck_filename=, or\n" " c) as a parameter in a parameter file (.param or .xml) passed to the program.\n"; return EXIT_FAILURE; } // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; std::string deck_filename = param.get("deck_filename"); // Write parameters used for later reference. (only if rank is zero) bool output = ( mpi_rank == 0 ) && param.getDefault("output", true); std::string output_dir; if (output) { // Create output directory if needed. output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { std::cerr << "Creating directories failed: " << fpath << std::endl; return EXIT_FAILURE; } // Write simulation parameters. param.writeParam(output_dir + "/simulation.param"); } std::string logFile = output_dir + "/LOGFILE.txt"; Opm::ParserPtr parser(new Opm::Parser()); { std::shared_ptr streamLog = std::make_shared(logFile , Opm::Log::DefaultMessageTypes); std::shared_ptr counterLog = std::make_shared(Opm::Log::DefaultMessageTypes); Opm::OpmLog::addBackend( "STREAM" , streamLog ); Opm::OpmLog::addBackend( "COUNTER" , counterLog ); } Opm::ParseMode parseMode({{ ParseMode::PARSE_RANDOM_SLASH , InputError::IGNORE }}); Opm::DeckConstPtr deck; std::shared_ptr eclipseState; try { deck = parser->parseFile(deck_filename, parseMode); Opm::checkDeck(deck); eclipseState.reset(new Opm::EclipseState(deck , parseMode)); } catch (const std::invalid_argument& e) { std::cerr << "Failed to create valid ECLIPSESTATE object. See logfile: " << logFile << std::endl; std::cerr << "Exception caught: " << e.what() << std::endl; return EXIT_FAILURE; } std::vector porv = eclipseState->getDoubleGridProperty("PORV")->getData(); #if USE_DUNE_CORNERPOINTGRID // Dune::CpGrid as grid manager typedef Dune::CpGrid Grid; // Grid init Grid grid; grid.processEclipseFormat(deck, false, false, false, porv); #else // UnstructuredGrid as grid manager typedef UnstructuredGrid Grid; GridManager gridManager( eclipseState->getEclipseGrid(), porv ); const Grid& grid = *(gridManager.c_grid()); #endif // Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step) if (param.has("output_interval")) { int output_interval = param.get("output_interval"); IOConfigPtr ioConfig = eclipseState->getIOConfig(); ioConfig->overrideRestartWriteInterval((size_t)output_interval); } const PhaseUsage pu = Opm::phaseUsageFromDeck(deck); std::vector compressedToCartesianIdx; Opm::createGlobalCellArray(grid, compressedToCartesianIdx); typedef BlackoilPropsAdFromDeck::MaterialLawManager MaterialLawManager; auto materialLawManager = std::make_shared(); materialLawManager->initFromDeck(deck, eclipseState, compressedToCartesianIdx); // Rock and fluid init BlackoilPropertiesFromDeck props( deck, eclipseState, materialLawManager, Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::cartDims(grid), param); BlackoilPropsAdFromDeck new_props( deck, eclipseState, materialLawManager, grid ); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. RockCompressibility rock_comp(deck, eclipseState); // Gravity. gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity; BlackoilState state; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::cartDims(grid), Opm::UgGridHelpers::numFaces(grid), Opm::UgGridHelpers::faceCells(grid), Opm::UgGridHelpers::beginFaceCentroids(grid), Opm::UgGridHelpers::beginCellCentroids(grid), Opm::UgGridHelpers::dimensions(grid), props, param, gravity[2], state); initBlackoilSurfvol(Opm::UgGridHelpers::numCells(grid), props, state); enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour }; if (pu.phase_used[Oil] && pu.phase_used[Gas]) { const int numPhases = props.numPhases(); const int numCells = Opm::UgGridHelpers::numCells(grid); for (int c = 0; c < numCells; ++c) { state.gasoilratio()[c] = state.surfacevol()[c*numPhases + pu.phase_pos[Gas]] / state.surfacevol()[c*numPhases + pu.phase_pos[Oil]]; } } } else if (deck->hasKeyword("EQUIL") && props.numPhases() == 3) { state.init(Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::numFaces(grid), props.numPhases()); const double grav = param.getDefault("gravity", unit::gravity); initStateEquil(grid, props, deck, eclipseState, grav, state); state.faceflux().resize(Opm::UgGridHelpers::numFaces(grid), 0.0); } else { initBlackoilStateFromDeck(Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::numFaces(grid), Opm::UgGridHelpers::faceCells(grid), Opm::UgGridHelpers::beginFaceCentroids(grid), Opm::UgGridHelpers::beginCellCentroids(grid), Opm::UgGridHelpers::dimensions(grid), props, deck, gravity[2], state); } // The capillary pressure is scaled in new_props to match the scaled capillary pressure in props. if (deck->hasKeyword("SWATINIT")) { const int numCells = Opm::UgGridHelpers::numCells(grid); std::vector cells(numCells); for (int c = 0; c < numCells; ++c) { cells[c] = c; } std::vector pc = state.saturation(); props.capPress(numCells, state.saturation().data(), cells.data(), pc.data(),NULL); new_props.setSwatInitScaling(state.saturation(),pc); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; const bool use_local_perm = param.getDefault("use_local_perm", true); DerivedGeology geoprops(grid, new_props, eclipseState, use_local_perm, grav); boost::any parallel_information; // At this point all properties and state variables are correctly initialized // If there are more than one processors involved, we now repartition the grid // and initilialize new properties and states for it. if( mpi_size > 1 ) { Opm::distributeGridAndData( grid, eclipseState, state, new_props, geoprops, parallel_information, use_local_perm ); } // create output writer after grid is distributed, otherwise the parallel output // won't work correctly since we need to create a mapping from the distributed to // the global view Opm::BlackoilOutputWriter outputWriter(grid, param, eclipseState, pu, new_props.permeability() ); // Solver for Newton iterations. std::unique_ptr fis_solver; { const std::string cprSolver = "cpr"; const std::string interleavedSolver = "interleaved"; const std::string directSolver = "direct"; const std::string flowDefaultSolver = interleavedSolver; std::shared_ptr simCfg = eclipseState->getSimulationConfig(); std::string solver_approach = flowDefaultSolver; if (param.has("solver_approach")) { solver_approach = param.get("solver_approach"); } else { if (simCfg->useCPR()) { solver_approach = cprSolver; } } if (solver_approach == cprSolver) { fis_solver.reset(new NewtonIterationBlackoilCPR(param, parallel_information)); } else if (solver_approach == interleavedSolver) { fis_solver.reset(new NewtonIterationBlackoilInterleaved(param, parallel_information)); } else if (solver_approach == directSolver) { fis_solver.reset(new NewtonIterationBlackoilSimple(param, parallel_information)); } else { OPM_THROW( std::runtime_error , "Internal error - solver approach " << solver_approach << " not recognized."); } } Opm::ScheduleConstPtr schedule = eclipseState->getSchedule(); Opm::TimeMapConstPtr timeMap(schedule->getTimeMap()); SimulatorTimer simtimer; // initialize variables simtimer.init(timeMap); std::vector threshold_pressures = thresholdPressures(parseMode, eclipseState, grid); SimulatorFullyImplicitBlackoil< Grid > simulator(param, grid, geoprops, new_props, rock_comp.isActive() ? &rock_comp : 0, *fis_solver, grav, deck->hasKeyword("DISGAS"), deck->hasKeyword("VAPOIL"), eclipseState, outputWriter, threshold_pressures); if (!schedule->initOnly()){ if( output_cout ) { std::cout << "\n\n================ Starting main simulation loop ===============\n" << std::flush; } SimulatorReport fullReport = simulator.run(simtimer, state); if( output_cout ) { std::cout << "\n\n================ End of simulation ===============\n\n"; fullReport.reportFullyImplicit(std::cout); } if (output) { std::string filename = output_dir + "/walltime.txt"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); fullReport.reportParam(tot_os); warnIfUnusedParams(param); } } else { outputWriter.writeInit( simtimer ); if ( output_cout ) { std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush; } } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; return EXIT_FAILURE; }