/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3) #include #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Note: the GridHelpers must be included before this (to make overloads available). \TODO: Fix. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { // Must ensure an instance of the helper is created to initialise MPI. const Dune::MPIHelper& mpi_helper = Dune::MPIHelper::instance(argc, argv); using namespace Opm; std::cout << "\n================ Test program for fully implicit three-phase black-oil flow ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); if (!use_deck) { OPM_THROW(std::runtime_error, "This program must be run with an input deck. " "Specify the deck with deck_filename=deckname.data (for example)."); } std::shared_ptr grid; std::shared_ptr props; std::shared_ptr new_props; std::shared_ptr rock_comp; BlackoilState state; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; std::string deck_filename = param.get("deck_filename"); // Write parameters used for later reference. (only if rank is zero) bool output = ( mpi_helper.rank() == 0 ) && param.getDefault("output", true); std::string output_dir; if (output) { // Create output directory if needed. output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } // Write simulation parameters. param.writeParam(output_dir + "/simulation.param"); } std::string logFile = output_dir + "/LOGFILE.txt"; Opm::ParserPtr parser(new Opm::Parser()); { std::shared_ptr streamLog = std::make_shared(logFile , Opm::Log::DefaultMessageTypes); std::shared_ptr counterLog = std::make_shared(Opm::Log::DefaultMessageTypes); Opm::OpmLog::addBackend( "STREAM" , streamLog ); Opm::OpmLog::addBackend( "COUNTER" , counterLog ); } Opm::DeckConstPtr deck; std::shared_ptr eclipseState; try { deck = parser->parseFile(deck_filename); Opm::checkDeck(deck); eclipseState.reset(new Opm::EclipseState(deck)); } catch (const std::invalid_argument& e) { std::cerr << "Failed to create valid ECLIPSESTATE object. See logfile: " << logFile << std::endl; std::cerr << "Exception caught: " << e.what() << std::endl; return EXIT_FAILURE; } // Grid init grid.reset(new Dune::CpGrid); std::vector porv = eclipseState->getDoubleGridProperty("PORV")->getData(); grid->processEclipseFormat(deck, false, false, false, porv); const PhaseUsage pu = Opm::phaseUsageFromDeck(deck); Opm::BlackoilOutputWriter outputWriter(*grid, param, eclipseState, pu ); // Rock and fluid init props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, Opm::UgGridHelpers::numCells(*grid), Opm::UgGridHelpers::globalCell(*grid), Opm::UgGridHelpers::cartDims(*grid), Opm::UgGridHelpers::beginCellCentroids(*grid), Opm::UgGridHelpers::dimensions(*grid), param)); new_props.reset(new BlackoilPropsAdFromDeck(deck, eclipseState, *grid)); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. rock_comp.reset(new RockCompressibility(deck, eclipseState)); // Gravity. gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(grid->numCells(), &(grid->globalCell())[0], &(grid->logicalCartesianSize()[0]), grid->numFaces(), UgGridHelpers::faceCells(*grid), grid->beginFaceCentroids(), grid->beginCellCentroids(), Dune::CpGrid::dimension, *props, param, gravity[2], state); initBlackoilSurfvol(grid->numCells(), *props, state); enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour }; if (pu.phase_used[Oil] && pu.phase_used[Gas]) { const int np = props->numPhases(); const int nc = grid->numCells(); for (int c = 0; c < nc; ++c) { state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]] / state.surfacevol()[c*np + pu.phase_pos[Oil]]; } } } else if (deck->hasKeyword("EQUIL") && props->numPhases() == 3) { state.init(grid->numCells(), grid->numFaces(), props->numPhases()); const double grav = param.getDefault("gravity", unit::gravity); initStateEquil(*grid, *props, deck, eclipseState, grav, state); state.faceflux().resize(grid->numFaces(), 0.0); } else { initBlackoilStateFromDeck(grid->numCells(), &(grid->globalCell())[0], grid->numFaces(), UgGridHelpers::faceCells(*grid), grid->beginFaceCentroids(), grid->beginCellCentroids(), Dune::CpGrid::dimension, *props, deck, gravity[2], state); } // The capillary pressure is scaled in new_props to match the scaled capillary pressure in props. if (deck->hasKeyword("SWATINIT")) { const int nc = grid->numCells(); std::vector cells(nc); for (int c = 0; c < nc; ++c) { cells[c] = c; } std::vector pc = state.saturation(); props->capPress(nc, state.saturation().data(), cells.data(), pc.data(),NULL); new_props->setSwatInitScaling(state.saturation(),pc); } BlackoilState distributed_state; std::shared_ptr distributed_props = new_props; Dune::CpGrid distributed_grid = *grid; // At this point all properties and state variables are correctly initialized // If there are more than one processors involved, we now repartition the grid // and initilialize new properties and states for it. bool must_distribute = ( grid->comm().size() > 1 ); if( must_distribute ) { if( param.getDefault("output_matlab", false) || param.getDefault("output_ecl", true) ) { OPM_THROW(std::logic_error, "We only support vtk output during parallel runs. " <<"Please use \"output_matlab=false output_ecl=false\" to deactivate the " <<"other outputs!"); } grid->loadBalance(); Dune::CpGrid global_grid = *grid; distributed_grid = *grid; global_grid.switchToGlobalView(); distributed_grid.switchToDistributedView(); distributed_props = std::make_shared(*new_props, grid->numCells()); distributed_state.init(grid->numCells(), grid->numFaces(), state.numPhases()); // init does not resize surfacevol. Do it manually. distributed_state.surfacevol().resize(grid->numCells()*state.numPhases(), std::numeric_limits::max()); Opm::BlackoilStateDataHandle state_handle(global_grid, distributed_grid, state, distributed_state); Opm::BlackoilPropsDataHandle props_handle(*new_props, *distributed_props); grid->scatterData(state_handle); grid->scatterData(props_handle); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Solver for Newton iterations. std::unique_ptr fis_solver; boost::any parallel_information; Opm::extractParallelGridInformationToISTL(*grid, parallel_information); if (param.getDefault("use_cpr", true)) { fis_solver.reset(new NewtonIterationBlackoilCPR(param, parallel_information)); } else { fis_solver.reset(new NewtonIterationBlackoilSimple(param, parallel_information)); } Opm::TimeMapConstPtr timeMap(eclipseState->getSchedule()->getTimeMap()); SimulatorTimer simtimer; // initialize variables simtimer.init(timeMap); Opm::DerivedGeology geology(distributed_grid, *distributed_props, eclipseState, false, grav); std::vector threshold_pressures = thresholdPressures(eclipseState, distributed_grid); SimulatorFullyImplicitBlackoil simulator(param, distributed_grid, geology, *distributed_props, rock_comp->isActive() ? rock_comp.get() : 0, *fis_solver, grav, deck->hasKeyword("DISGAS"), deck->hasKeyword("VAPOIL"), eclipseState, outputWriter, threshold_pressures); if( grid->comm().rank()==0 ) { std::cout << "\n\n================ Starting main simulation loop ===============\n" << std::flush; } SimulatorReport fullReport = simulator.run(simtimer, must_distribute ? distributed_state : state); if( grid->comm().rank()==0 ) { std::cout << "\n\n================ End of simulation ===============\n\n"; fullReport.report(std::cout); } if (output) { std::string filename = output_dir + "/walltime.txt"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); fullReport.reportParam(tot_os); warnIfUnusedParams(param); } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }