// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::VtkMultiPhaseModule
*/
#ifndef OPM_VTK_MULTI_PHASE_MODULE_HPP
#define OPM_VTK_MULTI_PHASE_MODULE_HPP
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
/*!
* \ingroup Vtk
*
* \brief VTK output module for quantities which make sense for all
* models which deal with multiple fluid phases in porous media
* that don't use flashy concepts like interfacial area.
*
* This module deals with the following quantities:
* - Pressures of all fluid phases
* - Densities of all fluid phases
* - Saturations of all fluid phases
* - Mobilities of all fluid phases
* - Relative permeabilities of all fluid phases
* - Viscosities of all fluid phases
* - Average molar masses of all fluid phases
* - Porosity of the medium
* - Norm of the intrinsic permeability of the medium
*/
template
class VtkMultiPhaseModule : public BaseOutputModule
{
using ParentType = BaseOutputModule;
using Simulator = GetPropType;
using Scalar = GetPropType;
using ElementContext = GetPropType;
using GridView = GetPropType;
using FluidSystem = GetPropType;
using DiscBaseOutputModule = GetPropType;
static const int vtkFormat = getPropValue();
using VtkMultiWriter = ::Opm::VtkMultiWriter;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = getPropValue() };
using ScalarBuffer = typename ParentType::ScalarBuffer;
using VectorBuffer = typename ParentType::VectorBuffer;
using TensorBuffer = typename ParentType::TensorBuffer;
using PhaseBuffer = typename ParentType::PhaseBuffer;
using DimVector = Dune::FieldVector;
using PhaseVectorBuffer = std::array;
public:
VtkMultiPhaseModule(const Simulator& simulator)
: ParentType(simulator)
{
params_.read();
}
/*!
* \brief Register all run-time parameters for the multi-phase VTK output module.
*/
static void registerParameters()
{
VtkMultiPhaseParams::registerParameters();
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to the VTK file.
*/
void allocBuffers()
{
if (params_.extrusionFactorOutput_) {
this->resizeScalarBuffer_(extrusionFactor_);
}
if (params_.pressureOutput_) {
this->resizePhaseBuffer_(pressure_);
}
if (params_.densityOutput_) {
this->resizePhaseBuffer_(density_);
}
if (params_.saturationOutput_) {
this->resizePhaseBuffer_(saturation_);
}
if (params_.mobilityOutput_) {
this->resizePhaseBuffer_(mobility_);
}
if (params_.relativePermeabilityOutput_) {
this->resizePhaseBuffer_(relativePermeability_);
}
if (params_.viscosityOutput_) {
this->resizePhaseBuffer_(viscosity_);
}
if (params_.averageMolarMassOutput_) {
this->resizePhaseBuffer_(averageMolarMass_);
}
if (params_.porosityOutput_) {
this->resizeScalarBuffer_(porosity_);
}
if (params_.intrinsicPermeabilityOutput_) {
this->resizeTensorBuffer_(intrinsicPermeability_);
}
if (params_.velocityOutput_) {
size_t nDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
velocity_[phaseIdx].resize(nDof);
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
velocity_[phaseIdx][dofIdx].resize(dimWorld);
velocity_[phaseIdx][dofIdx] = 0.0;
}
}
this->resizePhaseBuffer_(velocityWeight_);
}
if (params_.potentialGradientOutput_) {
size_t nDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
potentialGradient_[phaseIdx].resize(nDof);
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
potentialGradient_[phaseIdx][dofIdx].resize(dimWorld);
potentialGradient_[phaseIdx][dofIdx] = 0.0;
}
}
this->resizePhaseBuffer_(potentialWeight_);
}
}
/*!
* \brief Modify the internal buffers according to the intensive quantities seen on
* an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!Parameters::Get()) {
return;
}
const auto& problem = elemCtx.problem();
for (unsigned i = 0; i < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++i) {
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(i, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
if (params_.extrusionFactorOutput_) {
extrusionFactor_[I] = intQuants.extrusionFactor();
}
if (params_.porosityOutput_) {
porosity_[I] = getValue(intQuants.porosity());
}
if (params_.intrinsicPermeabilityOutput_) {
const auto& K = problem.intrinsicPermeability(elemCtx, i, /*timeIdx=*/0);
for (unsigned rowIdx = 0; rowIdx < K.rows; ++rowIdx) {
for (unsigned colIdx = 0; colIdx < K.cols; ++colIdx) {
intrinsicPermeability_[I][rowIdx][colIdx] = K[rowIdx][colIdx];
}
}
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
if (params_.pressureOutput_) {
pressure_[phaseIdx][I] = getValue(fs.pressure(phaseIdx));
}
if (params_.densityOutput_) {
density_[phaseIdx][I] = getValue(fs.density(phaseIdx));
}
if (params_.saturationOutput_) {
saturation_[phaseIdx][I] = getValue(fs.saturation(phaseIdx));
}
if (params_.mobilityOutput_) {
mobility_[phaseIdx][I] = getValue(intQuants.mobility(phaseIdx));
}
if (params_.relativePermeabilityOutput_) {
relativePermeability_[phaseIdx][I] = getValue(intQuants.relativePermeability(phaseIdx));
}
if (params_.viscosityOutput_) {
viscosity_[phaseIdx][I] = getValue(fs.viscosity(phaseIdx));
}
if (params_.averageMolarMassOutput_) {
averageMolarMass_[phaseIdx][I] = getValue(fs.averageMolarMass(phaseIdx));
}
}
}
if (params_.potentialGradientOutput_) {
// calculate velocities if requested
for (unsigned faceIdx = 0; faceIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ faceIdx) {
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, /*timeIdx=*/0);
unsigned i = extQuants.interiorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar weight = extQuants.extrusionFactor();
potentialWeight_[phaseIdx][I] += weight;
const auto& inputPGrad = extQuants.potentialGrad(phaseIdx);
DimVector pGrad;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
pGrad[dimIdx] = getValue(inputPGrad[dimIdx])*weight;
}
potentialGradient_[phaseIdx][I] += pGrad;
} // end for all phases
} // end for all faces
}
if (params_.velocityOutput_) {
// calculate velocities if requested
for (unsigned faceIdx = 0; faceIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ faceIdx) {
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, /*timeIdx=*/0);
unsigned i = extQuants.interiorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
unsigned j = extQuants.exteriorIndex();
unsigned J = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar weight = std::max(1e-16,
std::abs(getValue(extQuants.volumeFlux(phaseIdx))));
Valgrind::CheckDefined(extQuants.extrusionFactor());
assert(extQuants.extrusionFactor() > 0);
weight *= extQuants.extrusionFactor();
const auto& inputV = extQuants.filterVelocity(phaseIdx);
DimVector v;
for (unsigned k = 0; k < dimWorld; ++k) {
v[k] = getValue(inputV[k]);
}
if (v.two_norm() > 1e-20) {
weight /= v.two_norm();
}
v *= weight;
velocity_[phaseIdx][I] += v;
velocity_[phaseIdx][J] += v;
velocityWeight_[phaseIdx][I] += weight;
velocityWeight_[phaseIdx][J] += weight;
} // end for all phases
} // end for all faces
}
}
/*!
* \brief Add all buffers to the VTK output writer.
*/
void commitBuffers(BaseOutputWriter& baseWriter)
{
VtkMultiWriter* vtkWriter = dynamic_cast(&baseWriter);
if (!vtkWriter) {
return;
}
if (params_.extrusionFactorOutput_) {
this->commitScalarBuffer_(baseWriter, "extrusionFactor", extrusionFactor_);
}
if (params_.pressureOutput_) {
this->commitPhaseBuffer_(baseWriter, "pressure_%s", pressure_);
}
if (params_.densityOutput_) {
this->commitPhaseBuffer_(baseWriter, "density_%s", density_);
}
if (params_.saturationOutput_) {
this->commitPhaseBuffer_(baseWriter, "saturation_%s", saturation_);
}
if (params_.mobilityOutput_) {
this->commitPhaseBuffer_(baseWriter, "mobility_%s", mobility_);
}
if (params_.relativePermeabilityOutput_) {
this->commitPhaseBuffer_(baseWriter, "relativePerm_%s", relativePermeability_);
}
if (params_.viscosityOutput_) {
this->commitPhaseBuffer_(baseWriter, "viscosity_%s", viscosity_);
}
if (params_.averageMolarMassOutput_) {
this->commitPhaseBuffer_(baseWriter, "averageMolarMass_%s", averageMolarMass_);
}
if (params_.porosityOutput_) {
this->commitScalarBuffer_(baseWriter, "porosity", porosity_);
}
if (params_.intrinsicPermeabilityOutput_) {
this->commitTensorBuffer_(baseWriter, "intrinsicPerm", intrinsicPermeability_);
}
if (params_.velocityOutput_) {
size_t numDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// first, divide the velocity field by the
// respective finite volume's surface area
for (unsigned i = 0; i < numDof; ++i) {
velocity_[phaseIdx][i] /= velocityWeight_[phaseIdx][i];
}
// commit the phase velocity
char name[512];
snprintf(name, 512, "filterVelocity_%s", FluidSystem::phaseName(phaseIdx).data());
DiscBaseOutputModule::attachVectorDofData_(baseWriter, velocity_[phaseIdx], name);
}
}
if (params_.potentialGradientOutput_) {
size_t numDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// first, divide the velocity field by the
// respective finite volume's surface area
for (unsigned i = 0; i < numDof; ++i) {
potentialGradient_[phaseIdx][i] /= potentialWeight_[phaseIdx][i];
}
// commit the phase velocity
char name[512];
snprintf(name, 512, "gradP_%s", FluidSystem::phaseName(phaseIdx).data());
DiscBaseOutputModule::attachVectorDofData_(baseWriter,
potentialGradient_[phaseIdx],
name);
}
}
}
/*!
* \brief Returns true iff the module needs to access the extensive quantities of a
* context to do its job.
*
* For example, this happens if velocities or gradients should be written. Always
* returning true here does not do any harm from the correctness perspective, but it
* slows down writing the output fields.
*/
bool needExtensiveQuantities() const final
{
return params_.velocityOutput_ || params_.potentialGradientOutput_;
}
private:
VtkMultiPhaseParams params_{};
ScalarBuffer extrusionFactor_{};
PhaseBuffer pressure_{};
PhaseBuffer density_{};
PhaseBuffer saturation_{};
PhaseBuffer mobility_{};
PhaseBuffer relativePermeability_{};
PhaseBuffer viscosity_{};
PhaseBuffer averageMolarMass_{};
ScalarBuffer porosity_{};
TensorBuffer intrinsicPermeability_{};
PhaseVectorBuffer velocity_{};
PhaseBuffer velocityWeight_{};
PhaseVectorBuffer potentialGradient_{};
PhaseBuffer potentialWeight_{};
};
} // namespace Opm
#endif // OPM_VTK_MULTI_PHASE_MODULE_HPP