/* Copyright 2022-2023 SINTEF AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE TestGpuSparseMatrix #include #include #include #include #include #include #include BOOST_AUTO_TEST_CASE(TestConstruction1D) { // Here we will test a simple 1D finite difference scheme for // the Laplace equation: // // -\Delta u = f on [0,1] // // Using a central difference approximation of \Delta u, this can // be approximated by // // -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i) // // giving rise to the matrix // // -2 1 0 0 ... 0 0 // 1 -2 1 0 0 ... 0 // .... // 0 0 0 ...1 -2 1 // 0 0 0 ... 1 -2 const int N = 5; const int nonZeroes = N * 3 - 2; using M = Dune::FieldMatrix; using SpMatrix = Dune::BCRSMatrix; SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise); for (auto row = B.createbegin(); row != B.createend(); ++row) { // Add nonzeros for left neighbour, diagonal and right neighbour if (row.index() > 0) { row.insert(row.index() - 1); } row.insert(row.index()); if (row.index() < B.N() - 1) { row.insert(row.index() + 1); } } // This might not be the most elegant way of filling in a Dune sparse matrix, but it works. for (int i = 0; i < N; ++i) { B[i][i] = -2; if (i < N - 1) { B[i][i + 1] = 1; } if (i > 0) { B[i][i - 1] = 1; } } auto gpuSparseMatrix = Opm::gpuistl::GpuSparseMatrix::fromMatrix(B); const auto& nonZeroValuesCuda = gpuSparseMatrix.getNonZeroValues(); std::vector buffer(gpuSparseMatrix.nonzeroes(), 0.0); nonZeroValuesCuda.copyToHost(buffer.data(), buffer.size()); const double* nonZeroElements = static_cast(&((B[0][0][0][0]))); BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), nonZeroElements, nonZeroElements + B.nonzeroes()); BOOST_CHECK_EQUAL(N * 3 - 2, gpuSparseMatrix.nonzeroes()); std::vector rowIndicesFromCUDA(N + 1); gpuSparseMatrix.getRowIndices().copyToHost(rowIndicesFromCUDA.data(), rowIndicesFromCUDA.size()); BOOST_CHECK_EQUAL(rowIndicesFromCUDA[0], 0); BOOST_CHECK_EQUAL(rowIndicesFromCUDA[1], 2); for (int i = 2; i < N; ++i) { BOOST_CHECK_EQUAL(rowIndicesFromCUDA[i], rowIndicesFromCUDA[i - 1] + 3); } std::vector columnIndicesFromCUDA(B.nonzeroes(), 0); gpuSparseMatrix.getColumnIndices().copyToHost(columnIndicesFromCUDA.data(), columnIndicesFromCUDA.size()); BOOST_CHECK_EQUAL(columnIndicesFromCUDA[0], 0); BOOST_CHECK_EQUAL(columnIndicesFromCUDA[1], 1); // TODO: Check rest } BOOST_AUTO_TEST_CASE(RandomSparsityMatrix) { std::srand(0); double nonzeroPercent = 0.2; std::mt19937 generator; std::uniform_real_distribution distribution(0.0, 1.0); constexpr size_t dim = 3; const int N = 300; using M = Dune::FieldMatrix; using SpMatrix = Dune::BCRSMatrix; using Vector = Dune::BlockVector>; std::vector> nonzerocols(N); int nonZeroes = 0; for (auto row = 0; row < N; ++row) { for (size_t col = 0; col < N; ++col) { if (distribution(generator) < nonzeroPercent) { nonzerocols.at(row).push_back(col); nonZeroes++; } } } SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise); for (auto row = B.createbegin(); row != B.createend(); ++row) { for (size_t j = 0; j < nonzerocols[row.index()].size(); ++j) { row.insert(nonzerocols[row.index()][j]); } } // This might not be the most elegant way of filling in a Dune sparse matrix, but it works. for (int i = 0; i < N; ++i) { for (size_t j = 0; j < nonzerocols[i].size(); ++j) { for (size_t c1 = 0; c1 < dim; ++c1) { for (size_t c2 = 0; c2 < dim; ++c2) { B[i][nonzerocols[i][j]][c1][c2] = distribution(generator); } } } } auto gpuSparseMatrix = Opm::gpuistl::GpuSparseMatrix::fromMatrix(B); // check each column for (size_t component = 0; component < N; ++component) { std::vector inputDataX(N * dim, 0.0); inputDataX[component] = 1.0; std::vector inputDataY(N * dim, .25); auto inputVectorX = Opm::gpuistl::GpuVector(inputDataX.data(), inputDataX.size()); auto inputVectorY = Opm::gpuistl::GpuVector(inputDataY.data(), inputDataY.size()); Vector xHost(N), yHost(N); yHost = inputDataY[0]; inputVectorX.copyToHost(xHost); const double alpha = 1.42; gpuSparseMatrix.usmv(alpha, inputVectorX, inputVectorY); inputVectorY.copyToHost(inputDataY); B.usmv(alpha, xHost, yHost); for (size_t i = 0; i < N; ++i) { for (size_t c = 0; c < dim; ++c) { BOOST_CHECK_CLOSE(inputDataY[i * dim + c], yHost[i][c], 1e-7); } } inputVectorX.copyToHost(xHost); gpuSparseMatrix.mv(inputVectorX, inputVectorY); inputVectorY.copyToHost(inputDataY); B.mv(xHost, yHost); for (size_t i = 0; i < N; ++i) { for (size_t c = 0; c < dim; ++c) { BOOST_CHECK_CLOSE(inputDataY[i * dim + c], yHost[i][c], 1e-7); } } } }