/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { // Making these typedef to make the code more readable. typedef BlackoilPropsAdFromDeck::ADB ADB; typedef BlackoilPropsAdFromDeck::V V; typedef Eigen::Array Block; enum { Aqua = BlackoilPhases::Aqua, Liquid = BlackoilPhases::Liquid, Vapour = BlackoilPhases::Vapour }; /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(Opm::DeckConstPtr deck, Opm::EclipseStateConstPtr eclState, const UnstructuredGrid& grid, const bool init_rock) { init(deck, eclState, grid.number_of_cells, grid.global_cell, grid.cartdims, grid.cell_centroids, grid.dimensions, init_rock); } #ifdef HAVE_DUNE_CORNERPOINT /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(Opm::DeckConstPtr deck, Opm::EclipseStateConstPtr eclState, const Dune::CpGrid& grid, const bool init_rock ) { init(deck, eclState, grid.numCells(), static_cast(&grid.globalCell()[0]), static_cast(&grid.logicalCartesianSize()[0]), grid.beginCellCentroids(), Dune::CpGrid::dimension, init_rock); } #endif /// Initializes the properties. template void BlackoilPropsAdFromDeck::init(Opm::DeckConstPtr deck, Opm::EclipseStateConstPtr eclState, int number_of_cells, const int* global_cell, const int* cart_dims, const CentroidIterator& begin_cell_centroids, int dimension, const bool init_rock) { // retrieve the cell specific PVT table index from the deck // and using the grid... extractPvtTableIndex(cellPvtRegionIdx_, deck, number_of_cells, global_cell); if (init_rock){ rock_.init(eclState, number_of_cells, global_cell, cart_dims); } phase_usage_ = phaseUsageFromDeck(deck); // Surface densities. Accounting for different orders in eclipse and our code. Opm::DeckKeywordConstPtr densityKeyword = deck->getKeyword("DENSITY"); int numRegions = densityKeyword->size(); densities_.resize(numRegions); for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) { if (phase_usage_.phase_used[Liquid]) { densities_[regionIdx][phase_usage_.phase_pos[Liquid]] = densityKeyword->getRecord(regionIdx)->getItem("OIL")->getSIDouble(0); } if (phase_usage_.phase_used[Aqua]) { densities_[regionIdx][phase_usage_.phase_pos[Aqua]] = densityKeyword->getRecord(regionIdx)->getItem("WATER")->getSIDouble(0); } if (phase_usage_.phase_used[Vapour]) { densities_[regionIdx][phase_usage_.phase_pos[Vapour]] = densityKeyword->getRecord(regionIdx)->getItem("GAS")->getSIDouble(0); } } // first, calculate the PVT table index for each compressed // cell. This array is required to construct the PVT classes // below. Opm::extractPvtTableIndex(pvtTableIdx_, deck, number_of_cells, global_cell); const int numSamples = 0; // Resize the property objects container props_.resize(phase_usage_.num_phases); // Water PVT if (phase_usage_.phase_used[Aqua]) { // if water is used, we require the presence of the "PVTW" // keyword for now... std::shared_ptr pvtw(new PvtConstCompr); pvtw->initFromWater(deck->getKeyword("PVTW")); props_[phase_usage_.phase_pos[Aqua]] = pvtw; } // Oil PVT if (phase_usage_.phase_used[Liquid]) { // for oil, we support the "PVDO", "PVTO" and "PVCDO" // keywords... const auto& pvdoTables = eclState->getPvdoTables(); const auto& pvtoTables = eclState->getPvtoTables(); if (!pvdoTables.empty()) { if (numSamples > 0) { auto splinePvt = std::shared_ptr(new PvtDeadSpline); splinePvt->initFromOil(pvdoTables, numSamples); props_[phase_usage_.phase_pos[Liquid]] = splinePvt; } else { auto deadPvt = std::shared_ptr(new PvtDead); deadPvt->initFromOil(pvdoTables); props_[phase_usage_.phase_pos[Liquid]] = deadPvt; } } else if (!pvtoTables.empty()) { props_[phase_usage_.phase_pos[Liquid]].reset(new PvtLiveOil(pvtoTables)); } else if (deck->hasKeyword("PVCDO")) { std::shared_ptr pvcdo(new PvtConstCompr); pvcdo->initFromOil(deck->getKeyword("PVCDO")); props_[phase_usage_.phase_pos[Liquid]] = pvcdo; } else { OPM_THROW(std::runtime_error, "Input is missing PVDO, PVCDO or PVTO\n"); } } // Gas PVT if (phase_usage_.phase_used[Vapour]) { // gas can be specified using the "PVDG" or "PVTG" keywords... const auto& pvdgTables = eclState->getPvdgTables(); const auto& pvtgTables = eclState->getPvtgTables(); if (!pvdgTables.empty()) { if (numSamples > 0) { std::shared_ptr splinePvt(new PvtDeadSpline); splinePvt->initFromGas(pvdgTables, numSamples); props_[phase_usage_.phase_pos[Vapour]] = splinePvt; } else { std::shared_ptr deadPvt(new PvtDead); deadPvt->initFromGas(pvdgTables); props_[phase_usage_.phase_pos[Vapour]] = deadPvt; } } else if (!pvtgTables.empty()) { props_[phase_usage_.phase_pos[Vapour]].reset(new PvtLiveGas(pvtgTables)); } else { OPM_THROW(std::runtime_error, "Input is missing PVDG or PVTG\n"); } } // Oil vaporization controls (kw VAPPARS) vap1_ = vap2_ = 0.0; if (deck->hasKeyword("VAPPARS") && deck->hasKeyword("VAPOIL") && deck->hasKeyword("DISGAS")) { vap1_ = deck->getKeyword("VAPPARS")->getRecord(0)->getItem(0)->getRawDouble(0); vap2_ = deck->getKeyword("VAPPARS")->getRecord(0)->getItem(1)->getRawDouble(0); satOilMax_.resize(number_of_cells, 0.0); } else if (deck->hasKeyword("VAPPARS")) { OPM_THROW(std::runtime_error, "Input has VAPPARS, but missing VAPOIL and/or DISGAS\n"); } SaturationPropsFromDeck* ptr = new SaturationPropsFromDeck(); satprops_.reset(ptr); ptr->init(deck, eclState, number_of_cells, global_cell, begin_cell_centroids, dimension, -1); if (phase_usage_.num_phases != satprops_->numPhases()) { OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck() - " "Inconsistent number of phases in pvt data (" << phase_usage_.num_phases << ") and saturation-dependent function data (" << satprops_->numPhases() << ")."); } vap_satmax_guard_ = 0.01; } //////////////////////////// // Rock interface // //////////////////////////// /// \return D, the number of spatial dimensions. int BlackoilPropsAdFromDeck::numDimensions() const { return rock_.numDimensions(); } /// \return N, the number of cells. int BlackoilPropsAdFromDeck::numCells() const { return rock_.numCells(); } /// \return Array of N porosity values. const double* BlackoilPropsAdFromDeck::porosity() const { return rock_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* BlackoilPropsAdFromDeck::permeability() const { return rock_.permeability(); } //////////////////////////// // Fluid interface // //////////////////////////// /// \return Number of active phases (also the number of components). int BlackoilPropsAdFromDeck::numPhases() const { return phase_usage_.num_phases; } /// \return Object describing the active phases. PhaseUsage BlackoilPropsAdFromDeck::phaseUsage() const { return phase_usage_; } // ------ Density ------ /// Densities of stock components at surface conditions. /// \return Array of 3 density values. const double* BlackoilPropsAdFromDeck::surfaceDensity(const int cellIdx) const { int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; return &densities_[pvtRegionIdx][0]; } // ------ Viscosity ------ /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muWat(const V& pw, const V& T, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present."); } const int n = cells.size(); assert(pw.size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->mu(n, &pvtTableIdx_[0], pw.data(), T.data(), rs, mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muOil(const V& po, const V& T, const V& rs, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); V mu(n); V dmudp(n); V dmudr(n); props_[phase_usage_.phase_pos[Oil]]->mu(n, &pvtTableIdx_[0], po.data(), T.data(), rs.data(), &cond[0], mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muGas(const V& pg, const V& T, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Gas]]->mu(n, &pvtTableIdx_[0], pg.data(), T.data(), rs, mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muGas(const V& pg, const V& T, const V& rv, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); V mu(n); V dmudp(n); V dmudr(n); props_[phase_usage_.phase_pos[Gas]]->mu(n, &pvtTableIdx_[0], pg.data(), T.data(), rv.data(),&cond[0], mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw, const ADB& T, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present."); } const int n = cells.size(); assert(pw.size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->mu(n, &pvtTableIdx_[0], pw.value().data(), T.value().data(), rs, mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * pw.derivative()[block]; } return ADB::function(mu, jacs); } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); V mu(n); V dmudp(n); V dmudr(n); props_[phase_usage_.phase_pos[Oil]]->mu(n, &pvtTableIdx_[0], po.value().data(), T.value().data(), rs.value().data(), &cond[0], mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); ADB::M dmudr_diag = spdiag(dmudr); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * po.derivative()[block] + dmudr_diag * rs.derivative()[block]; } return ADB::function(mu, jacs); } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg, const ADB& T, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.value().size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rv = 0; props_[phase_usage_.phase_pos[Gas]]->mu(n, &pvtTableIdx_[0], pg.value().data(), T.value().data(), rv, mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * pg.derivative()[block]; } return ADB::function(mu, jacs); } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratio /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.value().size() == n); V mu(n); V dmudp(n); V dmudr(n); props_[phase_usage_.phase_pos[Gas]]->mu(n, &pvtTableIdx_[0], pg.value().data(), T.value().data(), rv.value().data(),&cond[0], mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); ADB::M dmudr_diag = spdiag(dmudr); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * pg.derivative()[block] + dmudr_diag * rv.derivative()[block]; } return ADB::function(mu, jacs); } // ------ Formation volume factor (b) ------ // These methods all call the matrix() method, after which the variable // (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for // a cell. For three-phase black oil: // A = [ bw 0 0 // 0 bo 0 // 0 b0*rs bw ] // Where b = B^{-1}. // Therefore, we extract the correct diagonal element, and are done. // When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs), // we also get the following derivative matrix: // A = [ dbw 0 0 // 0 dbo 0 // 0 db0*rs dbw ] // Again, we just extract a diagonal element. /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bWat(const V& pw, const V& T, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not present."); } const int n = cells.size(); assert(pw.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->b(n, &pvtTableIdx_[0], pw.data(), T.data(), rs, b.data(), dbdp.data(), dbdr.data()); return b; } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bOil(const V& po, const V& T, const V& rs, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); V b(n); V dbdp(n); V dbdr(n); props_[phase_usage_.phase_pos[Oil]]->b(n, &pvtTableIdx_[0], po.data(), T.data(), rs.data(), &cond[0], b.data(), dbdp.data(), dbdr.data()); return b; } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bGas(const V& pg, const V& T, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Gas]]->b(n, &pvtTableIdx_[0], pg.data(), T.data(), rs, b.data(), dbdp.data(), dbdr.data()); return b; } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratio /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bGas(const V& pg, const V& T, const V& rv, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); props_[phase_usage_.phase_pos[Gas]]->b(n, &pvtTableIdx_[0], pg.data(), T.data(), rv.data(), &cond[0], b.data(), dbdp.data(), dbdr.data()); return b; } /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw, const ADB& T, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present."); } const int n = cells.size(); assert(pw.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->b(n, &pvtTableIdx_[0], pw.value().data(), T.value().data(), rs, b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * pw.derivative()[block]; } return ADB::function(b, jacs); } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n taxonomies classifying fluid condition. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); V b(n); V dbdp(n); V dbdr(n); props_[phase_usage_.phase_pos[Oil]]->b(n, &pvtTableIdx_[0], po.value().data(), T.value().data(), rs.value().data(), &cond[0], b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); ADB::M dbdr_diag = spdiag(dbdr); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * po.derivative()[block] + dbdr_diag * rs.derivative()[block]; } return ADB::function(b, jacs); } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg, const ADB& T, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rv = 0; props_[phase_usage_.phase_pos[Gas]]->b(n, &pvtTableIdx_[0], pg.value().data(), T.value().data(), rv, b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * pg.derivative()[block]; } return ADB::function(b, jacs); } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratio /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); props_[phase_usage_.phase_pos[Gas]]->b(n, &pvtTableIdx_[0], pg.value().data(), T.value().data(), rv.value().data(), &cond[0], b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); ADB::M dmudr_diag = spdiag(dbdr); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * pg.derivative()[block] + dmudr_diag * rv.derivative()[block];; } return ADB::function(b, jacs); } // ------ Rs bubble point curve ------ /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V BlackoilPropsAdFromDeck::rsSat(const V& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); V rbub(n); V drbubdp(n); props_[phase_usage_.phase_pos[Oil]]->rsSat(n, &pvtTableIdx_[0], po.data(), rbub.data(), drbubdp.data()); return rbub; } /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V BlackoilPropsAdFromDeck::rsSat(const V& po, const V& so, const Cells& cells) const { V rs = rsSat(po, cells); applyVap(rs, so, cells, vap2_); return rs; } /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); V rbub(n); V drbubdp(n); props_[phase_usage_.phase_pos[Oil]]->rsSat(n, &pvtTableIdx_[0], po.value().data(), rbub.data(), drbubdp.data()); ADB::M drbubdp_diag = spdiag(drbubdp); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = drbubdp_diag * po.derivative()[block]; } return ADB::function(rbub, jacs); } /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po, const ADB& so, const Cells& cells) const { ADB rs = rsSat(po, cells); applyVap(rs, so, cells, vap2_); return rs; } // ------ Condensation curve ------ /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V BlackoilPropsAdFromDeck::rvSat(const V& po, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call rvMax(): gas phase not present."); } const int n = cells.size(); assert(po.size() == n); V rv(n); V drvdp(n); props_[phase_usage_.phase_pos[Gas]]->rvSat(n, &pvtTableIdx_[0], po.data(), rv.data(), drvdp.data()); return rv; } /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V BlackoilPropsAdFromDeck::rvSat(const V& po, const V& so, const Cells& cells) const { V rv = rvSat(po, cells); applyVap(rv, so, cells, vap1_); return rv; } /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call rvMax(): gas phase not present."); } const int n = cells.size(); assert(po.size() == n); V rv(n); V drvdp(n); props_[phase_usage_.phase_pos[Gas]]->rvSat(n, &pvtTableIdx_[0], po.value().data(), rv.data(), drvdp.data()); ADB::M drvdp_diag = spdiag(drvdp); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = drvdp_diag * po.derivative()[block]; } return ADB::function(rv, jacs); } /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po, const ADB& so, const Cells& cells) const { ADB rv = rvSat(po, cells); applyVap(rv, so, cells, vap1_); return rv; } // ------ Relative permeability ------ /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAdFromDeck::relperm(const V& sw, const V& so, const V& sg, const Cells& cells) const { const int n = cells.size(); const int np = numPhases(); Block s_all(n, np); if (phase_usage_.phase_used[Water]) { assert(sw.size() == n); s_all.col(phase_usage_.phase_pos[Water]) = sw; } if (phase_usage_.phase_used[Oil]) { assert(so.size() == n); s_all.col(phase_usage_.phase_pos[Oil]) = so; } if (phase_usage_.phase_used[Gas]) { assert(sg.size() == n); s_all.col(phase_usage_.phase_pos[Gas]) = sg; } Block kr(n, np); satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), 0); std::vector relperms; relperms.reserve(3); for (int phase = 0; phase < 3; ++phase) { if (phase_usage_.phase_used[phase]) { relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase])); } else { relperms.emplace_back(); } } return relperms; } /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAdFromDeck::relperm(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const { const int n = cells.size(); const int np = numPhases(); Block s_all(n, np); if (phase_usage_.phase_used[Water]) { assert(sw.value().size() == n); s_all.col(phase_usage_.phase_pos[Water]) = sw.value(); } if (phase_usage_.phase_used[Oil]) { assert(so.value().size() == n); s_all.col(phase_usage_.phase_pos[Oil]) = so.value(); } else { OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active."); } if (phase_usage_.phase_used[Gas]) { assert(sg.value().size() == n); s_all.col(phase_usage_.phase_pos[Gas]) = sg.value(); } Block kr(n, np); Block dkr(n, np*np); satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data()); const int num_blocks = so.numBlocks(); std::vector relperms; relperms.reserve(3); typedef const ADB* ADBPtr; ADBPtr s[3] = { &sw, &so, &sg }; for (int phase1 = 0; phase1 < 3; ++phase1) { if (phase_usage_.phase_used[phase1]) { const int phase1_pos = phase_usage_.phase_pos[phase1]; std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols()); } for (int phase2 = 0; phase2 < 3; ++phase2) { if (!phase_usage_.phase_used[phase2]) { continue; } const int phase2_pos = phase_usage_.phase_pos[phase2]; // Assemble dkr1/ds2. const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm() ADB::M dkr1_ds2_diag = spdiag(dkr.col(column)); for (int block = 0; block < num_blocks; ++block) { jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block]; } } relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs)); } else { relperms.emplace_back(ADB::null()); } } return relperms; } std::vector BlackoilPropsAdFromDeck::capPress(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const { const int numCells = cells.size(); const int numActivePhases = numPhases(); const int numBlocks = so.numBlocks(); Block activeSat(numCells, numActivePhases); if (phase_usage_.phase_used[Water]) { assert(sw.value().size() == numCells); activeSat.col(phase_usage_.phase_pos[Water]) = sw.value(); } if (phase_usage_.phase_used[Oil]) { assert(so.value().size() == numCells); activeSat.col(phase_usage_.phase_pos[Oil]) = so.value(); } else { OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active."); } if (phase_usage_.phase_used[Gas]) { assert(sg.value().size() == numCells); activeSat.col(phase_usage_.phase_pos[Gas]) = sg.value(); } Block pc(numCells, numActivePhases); Block dpc(numCells, numActivePhases*numActivePhases); satprops_->capPress(numCells, activeSat.data(), cells.data(), pc.data(), dpc.data()); std::vector adbCapPressures; adbCapPressures.reserve(3); const ADB* s[3] = { &sw, &so, &sg }; for (int phase1 = 0; phase1 < 3; ++phase1) { if (phase_usage_.phase_used[phase1]) { const int phase1_pos = phase_usage_.phase_pos[phase1]; std::vector jacs(numBlocks); for (int block = 0; block < numBlocks; ++block) { jacs[block] = ADB::M(numCells, s[phase1]->derivative()[block].cols()); } for (int phase2 = 0; phase2 < 3; ++phase2) { if (!phase_usage_.phase_used[phase2]) continue; const int phase2_pos = phase_usage_.phase_pos[phase2]; // Assemble dpc1/ds2. const int column = phase1_pos + numActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm() ADB::M dpc1_ds2_diag = spdiag(dpc.col(column)); for (int block = 0; block < numBlocks; ++block) { jacs[block] += dpc1_ds2_diag * s[phase2]->derivative()[block]; } } adbCapPressures.emplace_back(ADB::function(pc.col(phase1_pos), jacs)); } else { adbCapPressures.emplace_back(ADB::null()); } } return adbCapPressures; } /// Saturation update for hysteresis behavior. /// \param[in] cells Array of n cell indices to be associated with the saturation values. void BlackoilPropsAdFromDeck::updateSatHyst(const std::vector& saturation, const std::vector& cells) { const int n = cells.size(); satprops_->updateSatHyst(n, cells.data(), saturation.data()); } /// Update for max oil saturation. void BlackoilPropsAdFromDeck::updateSatOilMax(const std::vector& saturation) { if (!satOilMax_.empty()) { const int n = satOilMax_.size(); const int np = phase_usage_.num_phases; const int posOil = phase_usage_.phase_pos[Oil]; const double* s = saturation.data(); for (int i=0; i& cells, const double vap) const { if (!satOilMax_.empty() && vap > 0.0) { const int n = cells.size(); V factor = V::Ones(n, 1); for (int i=0; i vap_satmax_guard_ && so[i] < satOilMax_[cells[i]]) { factor[i] = std::pow(so[i]/satOilMax_[cells[i]], vap); } } r = factor*r; } } /// Apply correction to rs/rv according to kw VAPPARS /// \param[in/out] r Array of n rs/rv values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the r and so values. /// \param[in] vap Correction parameter. void BlackoilPropsAdFromDeck::applyVap(ADB& r, const ADB& so, const std::vector& cells, const double vap) const { if (!satOilMax_.empty() && vap > 0.0) { const int n = cells.size(); V factor = V::Ones(n, 1); //V dfactor_dso = V::Zero(n, 1); TODO: Consider effect of complete jacobian (including so-derivatives) for (int i=0; i vap_satmax_guard_ && so.value()[i] < satOilMax_[cells[i]]) { factor[i] = std::pow(so.value()[i]/satOilMax_[cells[i]], vap); //dfactor_dso[i] = vap*std::pow(so.value()[i]/satOilMax_[cells[i]], vap-1.0)/satOilMax_[cells[i]]; } } //ADB::M dfactor_dso_diag = spdiag(dfactor_dso); //const int num_blocks = so.numBlocks(); //std::vector jacs(num_blocks); //for (int block = 0; block < num_blocks; ++block) { // jacs[block] = dfactor_dso_diag * so.derivative()[block]; //} //r = ADB::function(factor, jacs)*r; r = factor*r; } } } // namespace Opm