/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Statoil ASA. Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services Copyright 2015 NTNU This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMODELBASE_HEADER_INCLUDED #define OPM_BLACKOILMODELBASE_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include struct Wells; namespace Opm { namespace parameter { class ParameterGroup; } class DerivedGeology; class RockCompressibility; class NewtonIterationBlackoilInterface; class VFPProperties; /// Struct for containing iteration variables. struct DefaultBlackoilSolutionState { typedef AutoDiffBlock ADB; explicit DefaultBlackoilSolutionState(const int np) : pressure ( ADB::null()) , temperature( ADB::null()) , saturation(np, ADB::null()) , rs ( ADB::null()) , rv ( ADB::null()) , qs ( ADB::null()) , bhp ( ADB::null()) , canonical_phase_pressures(3, ADB::null()) { } ADB pressure; ADB temperature; std::vector saturation; ADB rs; ADB rv; ADB qs; ADB bhp; // Below are quantities stored in the state for optimization purposes. std::vector canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active. }; /// Traits to encapsulate the types used by classes using or /// extending this model. Forward declared here, must be /// specialised for each concrete model class. template struct ModelTraits; /// A model implementation for three-phase black oil. /// /// The simulator is capable of handling three-phase problems /// where gas can be dissolved in oil and vice versa. It /// uses an industry-standard TPFA discretization with per-phase /// upwind weighting of mobilities. /// /// It uses automatic differentiation via the class AutoDiffBlock /// to simplify assembly of the jacobian matrix. /// \tparam Grid UnstructuredGrid or CpGrid. /// \tparam Implementation Provides concrete state types. template class BlackoilModelBase { public: // --------- Types and enums --------- typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef typename ModelTraits::ReservoirState ReservoirState; typedef typename ModelTraits::WellState WellState; typedef typename ModelTraits::ModelParameters ModelParameters; typedef typename ModelTraits::SolutionState SolutionState; // --------- Public methods --------- /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] fluid fluid properties /// \param[in] geo rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] wells well structure /// \param[in] vfp_properties Vertical flow performance tables /// \param[in] linsolver linear solver /// \param[in] eclState eclipse state /// \param[in] has_disgas turn on dissolved gas /// \param[in] has_vapoil turn on vaporized oil feature /// \param[in] terminal_output request output to cout/cerr BlackoilModelBase(const ModelParameters& param, const Grid& grid , const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const Wells* wells, const NewtonIterationBlackoilInterface& linsolver, Opm::EclipseStateConstPtr eclState, const bool has_disgas, const bool has_vapoil, const bool terminal_output); /// \brief Set threshold pressures that prevent or reduce flow. /// This prevents flow across faces if the potential /// difference is less than the threshold. If the potential /// difference is greater, the threshold value is subtracted /// before calculating flow. This is treated symmetrically, so /// flow is prevented or reduced in both directions equally. /// \param[in] threshold_pressures_by_face array of size equal to the number of faces /// of the grid passed in the constructor. void setThresholdPressures(const std::vector& threshold_pressures_by_face); /// Called once before each time step. /// \param[in] dt time step size /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void prepareStep(const double dt, ReservoirState& reservoir_state, WellState& well_state); /// Called once after each time step. /// In this class, this function does nothing. /// \param[in] dt time step size /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void afterStep(const double dt, ReservoirState& reservoir_state, WellState& well_state); /// Assemble the residual and Jacobian of the nonlinear system. /// \param[in] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables /// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep void assemble(const ReservoirState& reservoir_state, WellState& well_state, const bool initial_assembly); /// \brief Compute the residual norms of the mass balance for each phase, /// the well flux, and the well equation. /// \return a vector that contains for each phase the norm of the mass balance /// and afterwards the norm of the residual of the well flux and the well equation. std::vector computeResidualNorms() const; /// The size (number of unknowns) of the nonlinear system of equations. int sizeNonLinear() const; /// Number of linear iterations used in last call to solveJacobianSystem(). int linearIterationsLastSolve() const; /// Solve the Jacobian system Jx = r where J is the Jacobian and /// r is the residual. V solveJacobianSystem() const; /// Apply an update to the primary variables, chopped if appropriate. /// \param[in] dx updates to apply to primary variables /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void updateState(const V& dx, ReservoirState& reservoir_state, WellState& well_state); /// Return true if output to cout is wanted. bool terminalOutputEnabled() const; /// Compute convergence based on total mass balance (tol_mb) and maximum /// residual mass balance (tol_cnv). /// \param[in] dt timestep length /// \param[in] iteration current iteration number bool getConvergence(const double dt, const int iteration); /// The number of active fluid phases in the model. int numPhases() const; /// The number of active materials in the model. /// This should be equal to the number of material balance /// equations. int numMaterials() const; /// The name of an active material in the model. /// It is required that material_index < numMaterials(). const std::string& materialName(int material_index) const; /// Update the scaling factors for mass balance equations void updateEquationsScaling(); protected: // --------- Types and enums --------- typedef Eigen::Array DataBlock; struct ReservoirResidualQuant { ReservoirResidualQuant(); std::vector accum; // Accumulations ADB mflux; // Mass flux (surface conditions) ADB b; // Reciprocal FVF ADB dh; // Pressure drop across int. interfaces ADB mob; // Phase mobility (per cell) }; struct WellOps { WellOps(const Wells* wells); Eigen::SparseMatrix w2p; // well -> perf (scatter) Eigen::SparseMatrix p2w; // perf -> well (gather) }; // --------- Data members --------- const Grid& grid_; const BlackoilPropsAdInterface& fluid_; const DerivedGeology& geo_; const RockCompressibility* rock_comp_props_; const Wells* wells_; VFPProperties vfp_properties_; const NewtonIterationBlackoilInterface& linsolver_; // For each canonical phase -> true if active const std::vector active_; // Size = # active phases. Maps active -> canonical phase indices. const std::vector canph_; const std::vector cells_; // All grid cells HelperOps ops_; const WellOps wops_; const bool has_disgas_; const bool has_vapoil_; ModelParameters param_; bool use_threshold_pressure_; bool wells_active_; V threshold_pressures_by_interior_face_; std::vector rq_; std::vector phaseCondition_; V isRs_; V isRv_; V isSg_; V well_perforation_densities_; //Density of each well perforation V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation. LinearisedBlackoilResidual residual_; /// \brief Whether we print something to std::cout bool terminal_output_; std::vector primalVariable_; V pvdt_; std::vector material_name_; // --------- Protected methods --------- /// Access the most-derived class used for /// static polymorphism (CRTP). Implementation& asImpl() { return static_cast(*this); } /// Access the most-derived class used for /// static polymorphism (CRTP). const Implementation& asImpl() const { return static_cast(*this); } // return true if wells are available in the reservoir bool wellsActive() const { return wells_active_; } // return true if wells are available on this process bool localWellsActive() const { return wells_ ? (wells_->number_of_wells > 0 ) : false; } // return wells object const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; } void makeConstantState(SolutionState& state) const; SolutionState variableState(const ReservoirState& x, const WellState& xw) const; std::vector variableStateInitials(const ReservoirState& x, const WellState& xw) const; void variableReservoirStateInitials(const ReservoirState& x, std::vector& vars0) const; void variableWellStateInitials(const WellState& xw, std::vector& vars0) const; std::vector variableStateIndices() const; std::vector variableWellStateIndices() const; SolutionState variableStateExtractVars(const ReservoirState& x, const std::vector& indices, std::vector& vars) const; void variableStateExtractWellsVars(const std::vector& indices, std::vector& vars, SolutionState& state) const; void computeAccum(const SolutionState& state, const int aix ); void computeWellConnectionPressures(const SolutionState& state, const WellState& xw); void assembleMassBalanceEq(const SolutionState& state); void solveWellEq(const std::vector& mob_perfcells, const std::vector& b_perfcells, SolutionState& state, WellState& well_state); void computeWellFlux(const SolutionState& state, const std::vector& mob_perfcells, const std::vector& b_perfcells, V& aliveWells, std::vector& cq_s); void updatePerfPhaseRatesAndPressures(const std::vector& cq_s, const SolutionState& state, WellState& xw); void addWellFluxEq(const std::vector& cq_s, const SolutionState& state); void addWellContributionToMassBalanceEq(const std::vector& cq_s, const SolutionState& state, const WellState& xw); void addWellControlEq(const SolutionState& state, const WellState& xw, const V& aliveWells); void updateWellControls(WellState& xw) const; void updateWellState(const V& dwells, WellState& well_state); bool getWellConvergence(const int iteration); bool isVFPActive() const; std::vector computePressures(const ADB& po, const ADB& sw, const ADB& so, const ADB& sg) const; V computeGasPressure(const V& po, const V& sw, const V& so, const V& sg) const; std::vector computeRelPerm(const SolutionState& state) const; void computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& p , const SolutionState& state ); void applyThresholdPressures(ADB& dp); ADB fluidViscosity(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond) const; ADB fluidReciprocFVF(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond) const; ADB fluidDensity(const int phase, const ADB& b, const ADB& rs, const ADB& rv) const; V fluidRsSat(const V& p, const V& so, const std::vector& cells) const; ADB fluidRsSat(const ADB& p, const ADB& so, const std::vector& cells) const; V fluidRvSat(const V& p, const V& so, const std::vector& cells) const; ADB fluidRvSat(const ADB& p, const ADB& so, const std::vector& cells) const; ADB poroMult(const ADB& p) const; ADB transMult(const ADB& p) const; const std::vector phaseCondition() const {return phaseCondition_;} void classifyCondition(const ReservoirState& state); /// update the primal variable for Sg, Rv or Rs. The Gas phase must /// be active to call this method. void updatePrimalVariableFromState(const ReservoirState& state); /// Update the phaseCondition_ member based on the primalVariable_ member. /// Also updates isRs_, isRv_ and isSg_; void updatePhaseCondFromPrimalVariable(); /// \brief Compute the reduction within the convergence check. /// \param[in] B A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. B.col(i) contains the values /// for phase i. /// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. tempV.col(i) contains the /// values /// for phase i. /// \param[in] R A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. B.col(i) contains the values /// for phase i. /// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum /// of R for the phase i. /// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the /// maximum of tempV for the phase i. /// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average /// of B for the phase i. /// \param[out] maxNormWell The maximum of the well equations for each phase. /// \param[in] nc The number of cells of the local grid. /// \param[in] nw The number of wells on the local grid. /// \return The total pore volume over all cells. double convergenceReduction(const Eigen::Array& B, const Eigen::Array& tempV, const Eigen::Array& R, std::vector& R_sum, std::vector& maxCoeff, std::vector& B_avg, std::vector& maxNormWell, int nc, int nw) const; double dpMaxRel() const { return param_.dp_max_rel_; } double dsMax() const { return param_.ds_max_; } double drMaxRel() const { return param_.dr_max_rel_; } double maxResidualAllowed() const { return param_.max_residual_allowed_; } }; } // namespace Opm #include "BlackoilModelBase_impl.hpp" #endif // OPM_BLACKOILMODELBASE_HEADER_INCLUDED