/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Statoil ASA. Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services Copyright 2015 NTNU This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED #define OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED #include #include #include #include #include namespace Opm { struct BlackoilMultiSegmentSolutionState : public DefaultBlackoilSolutionState { explicit BlackoilMultiSegmentSolutionState(const int np) : DefaultBlackoilSolutionState(np) , segp ( ADB::null()) , segqs ( ADB::null()) { } ADB segp; // the segment pressures ADB segqs; // the segment phase rate in surface volume }; /// A model implementation for three-phase black oil with support /// for multi-segment wells. /// /// It uses automatic differentiation via the class AutoDiffBlock /// to simplify assembly of the jacobian matrix. /// \tparam Grid UnstructuredGrid or CpGrid. /// \tparam Implementation Provides concrete state types. template class BlackoilMultiSegmentModel : public BlackoilModelBase> { public: typedef BlackoilModelBase > Base; // base class typedef typename Base::ReservoirState ReservoirState; typedef typename Base::WellState WellState; typedef BlackoilMultiSegmentSolutionState SolutionState; // --------- Public methods --------- /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] fluid fluid properties /// \param[in] geo rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] wells well structure /// \param[in] vfp_properties Vertical flow performance tables /// \param[in] linsolver linear solver /// \param[in] eclState eclipse state /// \param[in] has_disgas turn on dissolved gas /// \param[in] has_vapoil turn on vaporized oil feature /// \param[in] terminal_output request output to cout/cerr BlackoilMultiSegmentModel(const typename Base::ModelParameters& param, const Grid& grid , const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const Wells* wells, const NewtonIterationBlackoilInterface& linsolver, Opm::EclipseStateConstPtr eclState, const bool has_disgas, const bool has_vapoil, const bool terminal_output, const std::vector& wells_multisegment); /// Called once before each time step. /// \param[in] dt time step size /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void prepareStep(const double dt, ReservoirState& reservoir_state, WellState& well_state); /// Called once after each time step. /// In this class, this function does nothing. /// \param[in] dt time step size /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void afterStep(const double dt, ReservoirState& reservoir_state, WellState& well_state) {}; /// Assemble the residual and Jacobian of the nonlinear system. /// \param[in] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables /// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep void assemble(const ReservoirState& reservoir_state, WellState& well_state, const bool initial_assembly) {}; /// Apply an update to the primary variables, chopped if appropriate. /// \param[in] dx updates to apply to primary variables /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void updateState(const V& dx, ReservoirState& reservoir_state, WellState& well_state) {}; protected: /* // --------- Types and enums --------- // using Base::DataBlock; // using Base::ReservoirResidualQuant; */ // --------- Data members --------- // For the non-segmented well, it should be the density with AVG or SEG way. // while usually SEG way using Base::well_perforation_densities_; //Density of each well perforation using Base::pvdt_; using Base::geo_; using Base::active_; // Diff to the pressure of the related segment. // When the well is a usual well, the bhp will be the pressure of the top segment // For mutlti-segmented wells, only AVG is allowed. // For non-segmented wells, typically SEG is used. AVG way might not have been // implemented yet. // Diff to bhp for each well perforation. only for usual wells. // For segmented wells, they are zeros. using Base::well_perforation_pressure_diffs_; // Diff to bhp for each well perforation. // ADB version of the densities, when using AVG way, the calculation of the density and hydrostatic head // is implicit ADB well_perforation_densities_adb_; // ADB version. Eventually, only ADB version will be kept. ADB well_perforation_pressure_diffs_adb_; // Pressure correction due to the different depth of the perforation // and the cell center of the grid block // For the non-segmented wells, since the perforation are forced to be // at the center of the grid cell, it should be ZERO. // It should only apply to the mutli-segmented wells. V well_perforation_pressure_cell_diffs_; ADB well_perforation_pressure_cell_diffs_adb_; // Pressure correction due to the depth differennce between segment depth and perforation depth. // TODO: It should be able to be merge as a part of the perforation_pressure_diffs_. ADB well_perforations_segment_pressure_diffs_; // the average of the fluid densities in the grid block // which is used to calculate the hydrostatic head correction due to the depth difference of the perforation // and the cell center of the grid block V well_perforation_cell_densities_; ADB well_perforation_cell_densities_adb_; V well_perforatoin_cell_pressure_diffs_; const std::vector wells_multisegment_; // return wells object // TODO: remove this wells structure using Base::wells; using Base::updatePrimalVariableFromState; const std::vector& wellsMultiSegment() const { return wells_multisegment_; } SolutionState variableState(const ReservoirState& x, const WellState& xw) const {}; void updateWellControls(WellState& xw) const {}; void updateWellState(const V& dwells, WellState& well_state) {}; std::vector variableStateInitials(const ReservoirState& x, const WellState& xw) const {}; void variableWellStateInitials(const WellState& xw, std::vector& vars0) const {}; void computeWellConnectionPressures(const SolutionState& state, const WellState& xw) {}; void computeWellFlux(const SolutionState& state, const std::vector& mob_perfcells, const std::vector& b_perfcells, V& aliveWells, std::vector& cq_s); void solveWellEq(const std::vector& mob_perfcells, const std::vector& b_perfcells, SolutionState& state, WellState& well_state); void updatePerfPhaseRatesAndPressures(const std::vector& cq_s, const SolutionState& state, WellState& xw) {}; void addWellFluxEq(const std::vector& cq_s, const SolutionState& state) {}; void addWellContributionToMassBalanceEq(const std::vector& cq_s, const SolutionState& state, const WellState& xw) {}; void addWellControlEq(const SolutionState& state, const WellState& xw, const V& aliveWells) {}; std::vector variableWellStateIndices() const {}; void makeConstantState(SolutionState& state) const; /* const Grid& grid_; const BlackoilPropsAdInterface& fluid_; const DerivedGeology& geo_; const RockCompressibility* rock_comp_props_; const Wells* wells_; // FOR TEMPORARY // SHOUlD BE A REFERENCE VFPProperties vfp_properties_; const NewtonIterationBlackoilInterface& linsolver_; // For each canonical phase -> true if active const std::vector active_; // Size = # active phases. Maps active -> canonical phase indices. const std::vector canph_; const std::vector cells_; // All grid cells HelperOps ops_; const bool has_disgas_; const bool has_vapoil_; ModelParameters param_; bool use_threshold_pressure_; bool wells_active_; V threshold_pressures_by_interior_face_; std::vector rq_; std::vector phaseCondition_; V isRs_; V isRv_; V isSg_; std::vector primalVariable_; V pvdt_; // --------- Protected methods --------- /// Access the most-derived class used for /// static polymorphism (CRTP). Implementation& asImpl() { return static_cast(*this); } /// Access the most-derived class used for /// static polymorphism (CRTP). const Implementation& asImpl() const { return static_cast(*this); } // return true if wells are available in the reservoir bool wellsActive() const { return wells_active_; } // return true if wells are available on this process bool localWellsActive() const { return wells_ ? (wells_->number_of_wells > 0 ) : false; } void variableReservoirStateInitials(const ReservoirState& x, std::vector& vars0) const; std::vector variableStateIndices() const; SolutionState variableStateExtractVars(const ReservoirState& x, const std::vector& indices, std::vector& vars) const; void variableStateExtractWellsVars(const std::vector& indices, std::vector& vars, SolutionState& state) const; void computeAccum(const SolutionState& state, const int aix ); void assembleMassBalanceEq(const SolutionState& state); bool getWellConvergence(const int iteration); bool isVFPActive() const; std::vector computePressures(const ADB& po, const ADB& sw, const ADB& so, const ADB& sg) const; V computeGasPressure(const V& po, const V& sw, const V& so, const V& sg) const; std::vector computeRelPerm(const SolutionState& state) const; void computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& p , const SolutionState& state ); void applyThresholdPressures(ADB& dp); ADB fluidViscosity(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond) const; ADB fluidReciprocFVF(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond) const; ADB fluidDensity(const int phase, const ADB& b, const ADB& rs, const ADB& rv) const; V fluidRsSat(const V& p, const V& so, const std::vector& cells) const; ADB fluidRsSat(const ADB& p, const ADB& so, const std::vector& cells) const; V fluidRvSat(const V& p, const V& so, const std::vector& cells) const; ADB fluidRvSat(const ADB& p, const ADB& so, const std::vector& cells) const; ADB poroMult(const ADB& p) const; ADB transMult(const ADB& p) const; const std::vector phaseCondition() const {return phaseCondition_;} void classifyCondition(const ReservoirState& state); /// update the primal variable for Sg, Rv or Rs. The Gas phase must /// be active to call this method. void updatePrimalVariableFromState(const ReservoirState& state); /// Update the phaseCondition_ member based on the primalVariable_ member. /// Also updates isRs_, isRv_ and isSg_; void updatePhaseCondFromPrimalVariable(); /// \brief Compute the reduction within the convergence check. /// \param[in] B A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. B.col(i) contains the values /// for phase i. /// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. tempV.col(i) contains the /// values /// for phase i. /// \param[in] R A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. B.col(i) contains the values /// for phase i. /// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum /// of R for the phase i. /// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the /// maximum of tempV for the phase i. /// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average /// of B for the phase i. /// \param[out] maxNormWell The maximum of the well equations for each phase. /// \param[in] nc The number of cells of the local grid. /// \param[in] nw The number of wells on the local grid. /// \return The total pore volume over all cells. double convergenceReduction(const Eigen::Array& B, const Eigen::Array& tempV, const Eigen::Array& R, std::array& R_sum, std::array& maxCoeff, std::array& B_avg, std::vector& maxNormWell, int nc, int nw) const; double dpMaxRel() const { return param_.dp_max_rel_; } double dsMax() const { return param_.ds_max_; } double drMaxRel() const { return param_.dr_max_rel_; } double maxResidualAllowed() const { return param_.max_residual_allowed_; } */ }; /// Providing types by template specialisation of ModelTraits for BlackoilMultiSegmentModel. template struct ModelTraits< BlackoilMultiSegmentModel > { typedef BlackoilState ReservoirState; typedef WellStateMultiSegment WellState; typedef BlackoilModelParameters ModelParameters; typedef BlackoilMultiSegmentSolutionState SolutionState; }; } // namespace Opm #include "BlackoilMultiSegmentModel_impl.hpp" #endif // OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED