/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include namespace Opm { IncompPropertiesBasic::IncompPropertiesBasic(const parameter::ParameterGroup& param, const int dim, const int num_cells) { double poro = param.getDefault("porosity", 1.0); using namespace Opm::unit; using namespace Opm::prefix; double perm = param.getDefault("permeability", 100.0)*milli*darcy; rock_.init(dim, num_cells, poro, perm); pvt_.init(param); satprops_.init(param); if (pvt_.numPhases() != satprops_.numPhases()) { OPM_THROW(std::runtime_error, "IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data (" << pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ")."); } viscosity_.resize(pvt_.numPhases()); pvt_.mu(1, 0, 0, 0, &viscosity_[0]); } IncompPropertiesBasic::IncompPropertiesBasic(const int num_phases, const SaturationPropsBasic::RelPermFunc& relpermfunc, const std::vector& rho, const std::vector& mu, const double por, //porosity const double perm, const int dim, const int num_cells) { rock_.init(dim, num_cells, por, perm); pvt_.init(num_phases, rho, mu); satprops_.init(num_phases, relpermfunc); if (pvt_.numPhases() != satprops_.numPhases()) { OPM_THROW(std::runtime_error, "IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data (" << pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ")."); } viscosity_.resize(pvt_.numPhases()); pvt_.mu(1, 0, 0, 0, &viscosity_[0]); } IncompPropertiesBasic::~IncompPropertiesBasic() { } /// \return D, the number of spatial dimensions. int IncompPropertiesBasic::numDimensions() const { return rock_.numDimensions(); } /// \return N, the number of cells. int IncompPropertiesBasic::numCells() const { return rock_.numCells(); } /// \return Array of N porosity values. const double* IncompPropertiesBasic::porosity() const { return rock_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* IncompPropertiesBasic::permeability() const { return rock_.permeability(); } // ---- Fluid interface ---- /// \return P, the number of phases (also the number of components). int IncompPropertiesBasic::numPhases() const { return pvt_.numPhases(); } /// \return Array of P viscosity values. const double* IncompPropertiesBasic::viscosity() const { return &viscosity_[0]; } /// \return Array of P density values. const double* IncompPropertiesBasic::density() const { // No difference between reservoir and surface densities // modelled by this class. return pvt_.surfaceDensities(); } /// \return Array of P density values. const double* IncompPropertiesBasic::surfaceDensity() const { // No difference between reservoir and surface densities // modelled by this class. return pvt_.surfaceDensities(); } /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) void IncompPropertiesBasic::relperm(const int n, const double* s, const int* /*cells*/, double* kr, double* dkrds) const { satprops_.relperm(n, s, kr, dkrds); } /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) void IncompPropertiesBasic::capPress(const int n, const double* s, const int* /*cells*/, double* pc, double* dpcds) const { satprops_.capPress(n, s, pc, dpcds); } /// Obtain the range of allowable saturation values. /// In cell cells[i], saturation of phase p is allowed to be /// in the interval [smin[i*P + p], smax[i*P + p]]. /// \param[in] n Number of data points. /// \param[in] cells Array of n cell indices. /// \param[out] smin Array of nP minimum s values, array must be valid before calling. /// \param[out] smax Array of nP maximum s values, array must be valid before calling. void IncompPropertiesBasic::satRange(const int n, const int* /*cells*/, double* smin, double* smax) const { satprops_.satRange(n, smin, smax); } } // namespace Opm