namespace Opm { template BlackoilWellModel:: BlackoilWellModel(Simulator& ebosSimulator) : ebosSimulator_(ebosSimulator) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) { terminal_output_ = false; if (ebosSimulator.gridView().comm().rank() == 0) terminal_output_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput); } template void BlackoilWellModel:: init(const Opm::EclipseState& eclState, const Opm::Schedule& schedule) { gravity_ = ebosSimulator_.problem().gravity()[2]; extractLegacyCellPvtRegionIndex_(); extractLegacyDepth_(); phase_usage_ = phaseUsageFromDeck(eclState); const auto& gridView = ebosSimulator_.gridView(); // calculate the number of elements of the compressed sequential grid. this needs // to be done in two steps because the dune communicator expects a reference as // argument for sum() number_of_cells_ = gridView.size(/*codim=*/0); global_nc_ = gridView.comm().sum(number_of_cells_); gravity_ = ebosSimulator_.problem().gravity()[2]; extractLegacyCellPvtRegionIndex_(); extractLegacyDepth_(); initial_step_ = true; const auto& grid = ebosSimulator_.vanguard().grid(); const auto& cartDims = Opm::UgGridHelpers::cartDims(grid); setupCartesianToCompressed_(Opm::UgGridHelpers::globalCell(grid), cartDims[0]*cartDims[1]*cartDims[2]); // add the eWoms auxiliary module for the wells to the list ebosSimulator_.model().addAuxiliaryModule(this); } template void BlackoilWellModel:: addNeighbors(std::vector& neighbors) const { if (!param_.matrix_add_well_contributions_) { return; } // Create cartesian to compressed mapping int last_time_step = schedule().getTimeMap().size() - 1; const auto& schedule_wells = schedule().getWells(); const auto& cartesianSize = Opm::UgGridHelpers::cartDims(grid()); // initialize the additional cell connections introduced by wells. for (const auto well : schedule_wells) { std::vector wellCells; // All possible connections of the well const auto& connectionSet = well->getConnections(last_time_step); wellCells.reserve(connectionSet.size()); for ( size_t c=0; c < connectionSet.size(); c++ ) { const auto& connection = connectionSet.get(c); int i = connection.getI(); int j = connection.getJ(); int k = connection.getK(); int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k); int compressed_idx = cartesian_to_compressed_.at(cart_grid_idx); if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells. wellCells.push_back(compressed_idx); } } for (int cellIdx : wellCells) { neighbors[cellIdx].insert(wellCells.begin(), wellCells.end()); } } } template void BlackoilWellModel:: linearize(JacobianMatrix& mat , GlobalEqVector& res) { if (!localWellsActive()) return; // we don't what to add the schur complement // here since it affects the getConvergence method /* for (const auto& well: well_container_) { if (param_.matrix_add_well_contributions_) well->addWellContributions(mat); // applying the well residual to reservoir residuals // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } */ } template void BlackoilWellModel:: beginReportStep(const int timeStepIdx) { const Grid& grid = ebosSimulator_.vanguard().grid(); const auto& defunct_well_names = ebosSimulator_.vanguard().defunctWellNames(); const auto& eclState = ebosSimulator_.vanguard().eclState(); wells_ecl_ = schedule().getWells(timeStepIdx); // Create wells and well state. // Pass empty dynamicListEconLimited class // The closing of wells due to limites is // handled by the wellTestState class DynamicListEconLimited dynamic_list_econ_limited; wells_manager_.reset( new WellsManager (eclState, schedule(), timeStepIdx, Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::cartDims(grid), Opm::UgGridHelpers::dimensions(grid), Opm::UgGridHelpers::cell2Faces(grid), Opm::UgGridHelpers::beginFaceCentroids(grid), dynamic_list_econ_limited, grid.comm().size() > 1, defunct_well_names) ); // Wells are active if they are active wells on at least // one process. wells_active_ = localWellsActive() ? 1 : 0; wells_active_ = grid.comm().max(wells_active_); // The well state initialize bhp with the cell pressure in the top cell. // We must therefore provide it with updated cell pressures size_t nc = number_of_cells_; std::vector cellPressures(nc, 0.0); ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator_.vanguard().gridView(); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) { continue; } elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double p = fs.pressure(FluidSystem::oilPhaseIdx).value(); cellPressures[cellIdx] = p; } well_state_.init(wells(), cellPressures, wells_ecl_, timeStepIdx, &previous_well_state_, phase_usage_); // handling MS well related if (param_.use_multisegment_well_) { // if we use MultisegmentWell model for (const auto& well : wells_ecl_) { // TODO: this is acutally not very accurate, because sometimes a deck just claims a MS well // while keep the well shut. More accurately, we should check if the well exisits in the Wells // structure here if (well->isMultiSegment(timeStepIdx) ) { // there is one well is MS well well_state_.initWellStateMSWell(wells(), wells_ecl_, timeStepIdx, phase_usage_, previous_well_state_); break; } } } // update the previous well state. This is used to restart failed steps. previous_well_state_ = well_state_; // Compute reservoir volumes for RESV controls. rateConverter_.reset(new RateConverterType (phase_usage_, std::vector(number_of_cells_, 0))); computeRESV(timeStepIdx); // update VFP properties vfp_properties_.reset (new VFPProperties ( schedule().getVFPInjTables(timeStepIdx), schedule().getVFPProdTables(timeStepIdx)) ); } // called at the beginning of a time step template void BlackoilWellModel:: beginTimeStep() { well_state_ = previous_well_state_; const int reportStepIdx = ebosSimulator_.episodeIndex(); const double simulationTime = ebosSimulator_.time(); // test wells wellTesting(reportStepIdx, simulationTime); // create the well container well_container_ = createWellContainer(reportStepIdx); // do the initialization for all the wells // TODO: to see whether we can postpone of the intialization of the well containers to // optimize the usage of the following several member variables for (auto& well : well_container_) { well->init(&phase_usage_, depth_, gravity_, number_of_cells_); } // calculate the efficiency factors for each well calculateEfficiencyFactors(); if (has_polymer_) { const Grid& grid = ebosSimulator_.vanguard().grid(); if (PolymerModule::hasPlyshlog()) { computeRepRadiusPerfLength(grid); } } for (auto& well : well_container_) { well->setVFPProperties(vfp_properties_.get()); } // Close completions due to economical reasons for (auto& well : well_container_) { well->closeCompletions(wellTestState_); } } template void BlackoilWellModel::wellTesting(const int timeStepIdx, const double simulationTime) { const auto& wtest_config = schedule().wtestConfig(timeStepIdx); if (wtest_config.size() == 0) { // there is no WTEST request return; } const auto& wellsForTesting = wellTestState_.updateWell(wtest_config, simulationTime); if (wellsForTesting.size() == 0) { // there is no well available for WTEST at the moment return; } // average B factors are required for the convergence checking of well equations std::vector< Scalar > B_avg(numComponents(), Scalar() ); computeAverageFormationFactor(B_avg); for (const auto& testWell : wellsForTesting) { const std::string& well_name = testWell.first; const std::string msg = std::string("well ") + well_name + std::string(" is tested"); OpmLog::info(msg); // this is the well we will test WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx); // some preparation before the well can be used well->init(&phase_usage_, depth_, gravity_, number_of_cells_); const WellNode& well_node = wellCollection().findWellNode(well_name); const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor(); well->setWellEfficiencyFactor(well_efficiency_factor); well->setVFPProperties(vfp_properties_.get()); const WellTestConfig::Reason testing_reason = testWell.second; well->wellTesting(ebosSimulator_, B_avg, simulationTime, timeStepIdx, terminal_output_, testing_reason, well_state_, wellTestState_); } } // called at the end of a report step template void BlackoilWellModel:: endReportStep() { } // called at the end of a report step template const SimulatorReport& BlackoilWellModel:: lastReport() const {return last_report_; } // called at the end of a time step template void BlackoilWellModel:: timeStepSucceeded(const double& simulationTime) { // TODO: when necessary rateConverter_->template defineState(ebosSimulator_); for (const auto& well : well_container_) { well->calculateReservoirRates(well_state_); } updateWellTestState(simulationTime, wellTestState_); // calculate the well potentials for output // TODO: when necessary try { std::vector well_potentials; computeWellPotentials(well_potentials); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; OpmLog::warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } previous_well_state_ = well_state_; } template template void BlackoilWellModel:: computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { rate = 0; int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx); for (const auto& well : well_container_) well->addCellRates(rate, elemIdx); } template void BlackoilWellModel:: initFromRestartFile(const RestartValue& restartValues) { // gives a dummy dynamic_list_econ_limited DynamicListEconLimited dummyListEconLimited; const auto& defunctWellNames = ebosSimulator_.vanguard().defunctWellNames(); WellsManager wellsmanager(eclState(), schedule(), // The restart step value is used to identify wells present at the given // time step. Wells that are added at the same time step as RESTART is initiated // will not be present in a restart file. Use the previous time step to retrieve // wells that have information written to the restart file. std::max(eclState().getInitConfig().getRestartStep() - 1, 0), Opm::UgGridHelpers::numCells(grid()), Opm::UgGridHelpers::globalCell(grid()), Opm::UgGridHelpers::cartDims(grid()), Opm::UgGridHelpers::dimensions(grid()), Opm::UgGridHelpers::cell2Faces(grid()), Opm::UgGridHelpers::beginFaceCentroids(grid()), dummyListEconLimited, grid().comm().size() > 1, defunctWellNames); const Wells* wells = wellsmanager.c_wells(); const int nw = wells->number_of_wells; if (nw > 0) { const auto phaseUsage = phaseUsageFromDeck(eclState()); const size_t numCells = Opm::UgGridHelpers::numCells(grid()); well_state_.resize(wells, numCells, phaseUsage); // Resize for restart step wellsToState(restartValues.wells, phaseUsage, well_state_); previous_well_state_ = well_state_; } initial_step_ = false; } template std::vector::WellInterfacePtr > BlackoilWellModel:: createWellContainer(const int time_step) { std::vector well_container; const int nw = numWells(); if (nw > 0) { well_container.reserve(nw); // With the following way, it will have the same order with wells struct // Hopefully, it can generate the same residual history with master branch for (int w = 0; w < nw; ++w) { const std::string well_name = std::string(wells()->name[w]); // finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl_.size(); int index_well = 0; for (; index_well < nw_wells_ecl; ++index_well) { if (well_name == wells_ecl_[index_well]->name()) { break; } } // It should be able to find in wells_ecl. if (index_well == nw_wells_ecl) { OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl "); } const Well* well_ecl = wells_ecl_[index_well]; // well is closed due to economical reasons if (wellTestState_.hasWell(well_name, WellTestConfig::Reason::ECONOMIC)) { if( well_ecl->getAutomaticShutIn() ) { // shut wells are not added to the well container well_state_.bhp()[w] = 0; const int np = numPhases(); for (int p = 0; p < np; ++p) { well_state_.wellRates()[np * w + p] = 0; } continue; } else { // close wells are added to the container but marked as closed struct WellControls* well_controls = wells()->ctrls[w]; well_controls_stop_well(well_controls); } } // Use the pvtRegionIdx from the top cell const int well_cell_top = wells()->well_cells[wells()->well_connpos[w]]; const int pvtreg = pvt_region_idx_[well_cell_top]; if ( !well_ecl->isMultiSegment(time_step) || !param_.use_multisegment_well_) { well_container.emplace_back(new StandardWell(well_ecl, time_step, wells(), param_, *rateConverter_, pvtreg, numComponents() ) ); } else { well_container.emplace_back(new MultisegmentWell(well_ecl, time_step, wells(), param_, *rateConverter_, pvtreg, numComponents() ) ); } } } return well_container; } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: createWellForWellTest(const std::string& well_name, const int report_step) const { // Finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl_.size(); int index_well_ecl = 0; for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) { if (well_name == wells_ecl_[index_well_ecl]->name()) { break; } } // It should be able to find in wells_ecl. if (index_well_ecl == nw_wells_ecl) { OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl "); } const Well* well_ecl = wells_ecl_[index_well_ecl]; // Finding the location of the well in wells struct. const int nw = numWells(); int well_index_wells = -999; for (int w = 0; w < nw; ++w) { if (well_name == std::string(wells()->name[w])) { well_index_wells = w; break; } } if (well_index_wells < 0) { OPM_THROW(std::logic_error, "Could not find the well " << well_name << " in the well struct "); } // Use the pvtRegionIdx from the top cell const int well_cell_top = wells()->well_cells[wells()->well_connpos[well_index_wells]]; const int pvtreg = pvt_region_idx_[well_cell_top]; if ( !well_ecl->isMultiSegment(report_step) || !param_.use_multisegment_well_) { return WellInterfacePtr(new StandardWell(well_ecl, report_step, wells(), param_, *rateConverter_, pvtreg, numComponents() ) ); } else { return WellInterfacePtr(new MultisegmentWell(well_ecl, report_step, wells(), param_, *rateConverter_, pvtreg, numComponents() ) ); } } template void BlackoilWellModel:: assemble(const int iterationIdx, const double dt) { last_report_ = SimulatorReport(); if ( ! wellsActive() ) { return; } updatePerforationIntensiveQuantities(); if (iterationIdx == 0) { calculateExplicitQuantities(); prepareTimeStep(); } updateWellControls(); // Set the well primary variables based on the value of well solutions initPrimaryVariablesEvaluation(); if (param_.solve_welleq_initially_ && iterationIdx == 0) { // solve the well equations as a pre-processing step last_report_ = solveWellEq(dt); if (initial_step_) { // update the explicit quantities to get the initial fluid distribution in the well correct. calculateExplicitQuantities(); prepareTimeStep(); last_report_ = solveWellEq(dt); initial_step_ = false; } // TODO: should we update the explicit related here again, or even prepareTimeStep(). // basically, this is a more updated state from the solveWellEq based on fixed // reservoir state, will tihs be a better place to inialize the explict information? } assembleWellEq(dt); last_report_.converged = true; } template void BlackoilWellModel:: assembleWellEq(const double dt) { for (auto& well : well_container_) { well->assembleWellEq(ebosSimulator_, dt, well_state_); } } template void BlackoilWellModel:: apply( BVector& r) const { if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(r); } } // Ax = A x - C D^-1 B x template void BlackoilWellModel:: apply(const BVector& x, BVector& Ax) const { // TODO: do we still need localWellsActive()? if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(x, Ax); } } // Ax = Ax - alpha * C D^-1 B x template void BlackoilWellModel:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; // scaleAddRes_ = - C D^-1 B x apply( x, scaleAddRes_ ); // Ax = Ax + alpha * scaleAddRes_ Ax.axpy( alpha, scaleAddRes_ ); } template void BlackoilWellModel:: recoverWellSolutionAndUpdateWellState(const BVector& x) { if (!localWellsActive()) return; for (auto& well : well_container_) { well->recoverWellSolutionAndUpdateWellState(x, well_state_); } } template void BlackoilWellModel:: resetWellControlFromState() const { for (auto& well : well_container_) { WellControls* wc = well->wellControls(); well_controls_set_current( wc, well_state_.currentControls()[well->indexOfWell()]); } } template bool BlackoilWellModel:: wellsActive() const { return wells_active_; } template void BlackoilWellModel:: setWellsActive(const bool wells_active) { wells_active_ = wells_active; } template bool BlackoilWellModel:: localWellsActive() const { return numWells() > 0; } template void BlackoilWellModel:: initPrimaryVariablesEvaluation() const { for (auto& well : well_container_) { well->initPrimaryVariablesEvaluation(); } } template SimulatorReport BlackoilWellModel:: solveWellEq(const double dt) { const int nw = numWells(); WellState well_state0 = well_state_; const int numComp = numComponents(); std::vector< Scalar > B_avg( numComp, Scalar() ); computeAverageFormationFactor(B_avg); const int max_iter = param_.max_welleq_iter_; int it = 0; bool converged; do { assembleWellEq(dt); const auto report = getWellConvergence(B_avg); converged = report.converged(); // checking whether the group targets are converged if (wellCollection().groupControlActive()) { converged = converged && wellCollection().groupTargetConverged(well_state_.wellRates()); } if (converged) { break; } ++it; if( localWellsActive() ) { for (auto& well : well_container_) { well->solveEqAndUpdateWellState(well_state_); } } // updateWellControls uses communication // Therefore the following is executed if there // are active wells anywhere in the global domain. if( wellsActive() ) { updateWellControls(); initPrimaryVariablesEvaluation(); } } while (it < max_iter); if (converged) { if ( terminal_output_ ) { OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations"); } } else { if ( terminal_output_ ) { OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations"); } well_state_ = well_state0; updatePrimaryVariables(); // also recover the old well controls for (int w = 0; w < nw; ++w) { WellControls* wc = well_container_[w]->wellControls(); well_controls_set_current(wc, well_state_.currentControls()[w]); } } SimulatorReport report; report.converged = converged; report.total_well_iterations = it; return report; } template ConvergenceReport BlackoilWellModel:: getWellConvergence(const std::vector& B_avg) const { // Get global (from all processes) convergence report. ConvergenceReport local_report; for (const auto& well : well_container_) { local_report += well->getWellConvergence(B_avg); } ConvergenceReport report = gatherConvergenceReport(local_report); // Log debug messages for NaN or too large residuals. for (const auto& f : report.wellFailures()) { if (f.severity() == ConvergenceReport::Severity::NotANumber) { OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } else if (f.severity() == ConvergenceReport::Severity::TooLarge) { OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } } // Throw if any NaN or too large residual found. ConvergenceReport::Severity severity = report.severityOfWorstFailure(); if (severity == ConvergenceReport::Severity::NotANumber) { OPM_THROW(Opm::NumericalIssue, "NaN residual found!"); } else if (severity == ConvergenceReport::Severity::TooLarge) { OPM_THROW(Opm::NumericalIssue, "Too large residual found!"); } return report; } template void BlackoilWellModel:: calculateExplicitQuantities() const { for (auto& well : well_container_) { well->calculateExplicitQuantities(ebosSimulator_, well_state_); } } template void BlackoilWellModel:: updateWellControls() { // Even if there no wells active locally, we cannot // return as the Destructor of the WellSwitchingLogger // uses global communication. For no well active globally // we simply return. if( !wellsActive() ) return ; #if HAVE_OPENMP #endif // HAVE_OPENMP wellhelpers::WellSwitchingLogger logger; for (const auto& well : well_container_) { well->updateWellControl(well_state_, logger); } updateGroupControls(); } template void BlackoilWellModel:: updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const { for (const auto& well : well_container_) { well->updateWellTestState(well_state_, simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState); } } template void BlackoilWellModel:: computeWellPotentials(std::vector& well_potentials) { // number of wells and phases const int nw = numWells(); const int np = numPhases(); well_potentials.resize(nw * np, 0.0); const Opm::SummaryConfig summaryConfig = ebosSimulator_.vanguard().summaryConfig(); for (const auto& well : well_container_) { // Only compute the well potential when asked for bool needed_for_output = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) || summaryConfig.hasSummaryKey( "WOPI:" + well->name()) || summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->wellType() == INJECTOR) || ((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) || summaryConfig.hasSummaryKey( "WOPP:" + well->name()) || summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->wellType() == PRODUCER); if (needed_for_output || wellCollection().requireWellPotentials()) { std::vector potentials; well->computeWellPotentials(ebosSimulator_, well_state_, potentials); // putting the sucessfully calculated potentials to the well_potentials for (int p = 0; p < np; ++p) { well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]); } } } // end of for (int w = 0; w < nw; ++w) // Store it in the well state well_state_.wellPotentials() = well_potentials; } template void BlackoilWellModel:: prepareTimeStep() { if ( wellCollection().havingVREPGroups() ) { rateConverter_->template defineState(ebosSimulator_); } // after restarting, the well_controls can be modified while // the well_state still uses the old control index // we need to synchronize these two. // keep in mind that we set the control index of well_state to be the same with // with the wellControls from the deck when we create well_state at the beginning of the report step resetWellControlFromState(); // process group control related prepareGroupControl(); // since the controls are all updated, we should update well_state accordingly for (const auto& well : well_container_) { const int w = well->indexOfWell(); WellControls* wc = well->wellControls(); const int control = well_controls_get_current(wc); well_state_.currentControls()[w] = control; if (well_state_.effectiveEventsOccurred(w) ) { well->updateWellStateWithTarget(well_state_); } // there is no new well control change input within a report step, // so next time step, the well does not consider to have effective events anymore if (well_state_.effectiveEventsOccurred(w) ) { well_state_.setEffectiveEventsOccurred(w, false); } } // end of for (int w = 0; w < nw; ++w) updatePrimaryVariables(); } template void BlackoilWellModel:: prepareGroupControl() { // group control related processing if (wellCollection().groupControlActive()) { for (const auto& well : well_container_) { WellControls* wc = well->wellControls(); WellNode& well_node = wellCollection().findWellNode(well->name()); // handling the situation that wells do not have a valid control // it happens the well specified with GRUP and restarting due to non-convergencing // putting the well under group control for this situation int ctrl_index = well_controls_get_current(wc); const int group_control_index = well_node.groupControlIndex(); if (group_control_index >= 0 && ctrl_index < 0) { // put well under group control well_controls_set_current(wc, group_control_index); well_state_.currentControls()[well->indexOfWell()] = group_control_index; } // Final step, update whehter the well is under group control or individual control // updated ctrl_index from the well control ctrl_index = well_controls_get_current(wc); if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } if (wellCollection().requireWellPotentials()) { // calculate the well potentials std::vector well_potentials; computeWellPotentials(well_potentials); // update/setup guide rates for each well based on the well_potentials // TODO: this is one of two places that still need Wells struct. In this function, only the well names // well types are used, probably the order of the wells to locate the correct values in well_potentials. wellCollection().setGuideRatesWithPotentials(wells(), phase_usage_, well_potentials); } applyVREPGroupControl(); if (!wellCollection().groupControlApplied()) { wellCollection().applyGroupControls(); } else { wellCollection().updateWellTargets(well_state_.wellRates()); } } } template const WellCollection& BlackoilWellModel:: wellCollection() const { return wells_manager_->wellCollection(); } template WellCollection& BlackoilWellModel:: wellCollection() { return wells_manager_->wellCollection(); } template const typename BlackoilWellModel::WellState& BlackoilWellModel:: wellState() const { return well_state_; } template const typename BlackoilWellModel::WellState& BlackoilWellModel:: wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); } template void BlackoilWellModel:: calculateEfficiencyFactors() { if ( !localWellsActive() ) { return; } for (auto& well : well_container_) { const std::string& well_name = well->name(); const WellNode& well_node = wellCollection().findWellNode(well_name); const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor(); well->setWellEfficiencyFactor(well_efficiency_factor); } } template void BlackoilWellModel:: computeWellVoidageRates(std::vector& well_voidage_rates, std::vector& voidage_conversion_coeffs) const { if ( !localWellsActive() ) { return; } // TODO: for now, we store the voidage rates for all the production wells. // For injection wells, the rates are stored as zero. // We only store the conversion coefficients for all the injection wells. // Later, more delicate model will be implemented here. // And for the moment, group control can only work for serial running. const int nw = numWells(); const int np = numPhases(); // we calculate the voidage rate for each well, that means the sum of all the phases. well_voidage_rates.resize(nw, 0); // store the conversion coefficients, while only for the use of injection wells. voidage_conversion_coeffs.resize(nw * np, 1.0); std::vector well_rates(np, 0.0); std::vector convert_coeff(np, 1.0); for (auto& well : well_container_) { const bool is_producer = well->wellType() == PRODUCER; const int well_cell_top =well->cells()[0]; const int w = well->indexOfWell(); const int pvtRegionIdx = pvt_region_idx_[well_cell_top]; // not sure necessary to change all the value to be positive if (is_producer) { std::transform(well_state_.wellRates().begin() + np * w, well_state_.wellRates().begin() + np * (w + 1), well_rates.begin(), std::negate()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff); well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(), convert_coeff.begin(), 0.0); } else { // TODO: Not sure whether will encounter situation with all zero rates // and whether it will cause problem here. std::copy(well_state_.wellRates().begin() + np * w, well_state_.wellRates().begin() + np * (w + 1), well_rates.begin()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff); std::copy(convert_coeff.begin(), convert_coeff.end(), voidage_conversion_coeffs.begin() + np * w); } } } template void BlackoilWellModel:: applyVREPGroupControl() { if ( wellCollection().havingVREPGroups() ) { std::vector well_voidage_rates; std::vector voidage_conversion_coeffs; computeWellVoidageRates(well_voidage_rates, voidage_conversion_coeffs); wellCollection().applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs); // for the wells under group control, update the control index for the well_state_ and well_controls for (const WellNode* well_node : wellCollection().getLeafNodes()) { if (well_node->isInjector() && !well_node->individualControl()) { const int well_index = well_node->selfIndex(); well_state_.currentControls()[well_index] = well_node->groupControlIndex(); WellControls* wc = well_container_[well_index]->wellControls(); well_controls_set_current(wc, well_node->groupControlIndex()); } } } } template void BlackoilWellModel:: updateGroupControls() { if (wellCollection().groupControlActive()) { for (auto& well : well_container_) { // update whether well is under group control // get well node in the well collection WellNode& well_node = wellCollection().findWellNode(well->name()); // update whehter the well is under group control or individual control const int current = well_state_.currentControls()[well->indexOfWell()]; if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } applyVREPGroupControl(); // upate the well targets following group controls // it will not change the control mode, only update the targets wellCollection().updateWellTargets(well_state_.wellRates()); // TODO: we should only do the well is involved in the update group targets for (auto& well : well_container_) { well->updateWellStateWithTarget(well_state_); well->updatePrimaryVariables(well_state_); } } } template void BlackoilWellModel:: setupCartesianToCompressed_(const int* global_cell, int number_of_cartesian_cells) { cartesian_to_compressed_.resize(number_of_cartesian_cells, -1); if (global_cell) { for (unsigned i = 0; i < number_of_cells_; ++i) { cartesian_to_compressed_[global_cell[i]] = i; } } else { for (unsigned i = 0; i < number_of_cells_; ++i) { cartesian_to_compressed_[i] = i; } } } template void BlackoilWellModel:: computeRepRadiusPerfLength(const Grid& grid) { for (const auto& well : well_container_) { well->computeRepRadiusPerfLength(grid, cartesian_to_compressed_); } } template void BlackoilWellModel:: computeAverageFormationFactor(std::vector& B_avg) const { const auto& grid = ebosSimulator_.vanguard().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(ebosSimulator_); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); auto& B = B_avg[ compIdx ]; B += 1 / fs.invB(phaseIdx).value(); } if (has_solvent_) { auto& B = B_avg[solventSaturationIdx]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for(auto& bval: B_avg) { bval/=global_nc_; } } template void BlackoilWellModel:: updatePrimaryVariables() { for (const auto& well : well_container_) { well->updatePrimaryVariables(well_state_); } } template void BlackoilWellModel::extractLegacyCellPvtRegionIndex_() { const auto& grid = ebosSimulator_.vanguard().grid(); const auto& eclProblem = ebosSimulator_.problem(); const unsigned numCells = grid.size(/*codim=*/0); pvt_region_idx_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { pvt_region_idx_[cellIdx] = eclProblem.pvtRegionIndex(cellIdx); } } // The number of components in the model. template int BlackoilWellModel::numComponents() const { if (numPhases() == 2) { return 2; } int numComp = FluidSystem::numComponents; if (has_solvent_) { numComp ++; } return numComp; } template int BlackoilWellModel:: numWells() const { return wells() ? wells()->number_of_wells : 0; } template int BlackoilWellModel:: numPhases() const { return wells() ? wells()->number_of_phases : 1; } template void BlackoilWellModel::extractLegacyDepth_() { const auto& grid = ebosSimulator_.vanguard().grid(); const unsigned numCells = grid.size(/*codim=*/0); depth_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { depth_[cellIdx] = grid.cellCenterDepth(cellIdx); } } template void BlackoilWellModel:: updatePerforationIntensiveQuantities() { ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator_.gridView(); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); } } template void BlackoilWellModel:: computeRESV(const std::size_t step) { typedef SimFIBODetails::WellMap WellMap; const WellMap& wmap = SimFIBODetails::mapWells(wells_ecl_); const std::vector& resv_wells = SimFIBODetails::resvWells(wells(), step, wmap); int global_number_resv_wells = resv_wells.size(); global_number_resv_wells = ebosSimulator_.gridView().comm().sum(global_number_resv_wells); if ( global_number_resv_wells > 0 ) { rateConverter_->template defineState(ebosSimulator_); } if (! resv_wells.empty()) { const PhaseUsage& pu = phase_usage_; const std::vector::size_type np = pu.num_phases; std::vector distr (np); std::vector hrates(np); for (std::vector::const_iterator rp = resv_wells.begin(), e = resv_wells.end(); rp != e; ++rp) { WellControls* ctrl = wells()->ctrls[*rp]; const bool is_producer = wells()->type[*rp] == PRODUCER; const int well_cell_top = wells()->well_cells[wells()->well_connpos[*rp]]; const int pvtreg = pvt_region_idx_[well_cell_top]; // RESV control mode, all wells { const int rctrl = SimFIBODetails::resv_control(ctrl); if (0 <= rctrl) { const int fipreg = 0; // Hack. Ignore FIP regions. rateConverter_->calcCoeff(fipreg, pvtreg, distr); if (!is_producer) { // injectors well_controls_assert_number_of_phases(ctrl, np); // original distr contains 0 and 1 to indicate phases under control const double* old_distr = well_controls_get_current_distr(ctrl); for (size_t p = 0; p < np; ++p) { distr[p] *= old_distr[p]; } } well_controls_iset_distr(ctrl, rctrl, & distr[0]); } } // RESV control, WCONHIST wells. A bit of duplicate // work, regrettably. if (is_producer && wells()->name[*rp] != 0) { WellMap::const_iterator i = wmap.find(wells()->name[*rp]); if (i != wmap.end()) { const auto* wp = i->second; const WellProductionProperties& p = wp->getProductionProperties(step); if (! p.predictionMode) { // History matching (WCONHIST/RESV) SimFIBODetails::historyRates(pu, p, hrates); const int fipreg = 0; // Hack. Ignore FIP regions. rateConverter_->calcCoeff(fipreg, pvtreg, distr); // WCONHIST/RESV target is sum of all // observed phase rates translated to // reservoir conditions. Recall sign // convention: Negative for producers. std::vector hrates_resv(np); rateConverter_->calcReservoirVoidageRates(fipreg, pvtreg, hrates, hrates_resv); const double target = -std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0); well_controls_clear(ctrl); well_controls_assert_number_of_phases(ctrl, int(np)); static const double invalid_alq = -std::numeric_limits::max(); static const int invalid_vfp = -std::numeric_limits::max(); const int ok_resv = well_controls_add_new(RESERVOIR_RATE, target, invalid_alq, invalid_vfp, & distr[0], ctrl); // For WCONHIST the BHP limit is set to 1 atm. // or a value specified using WELTARG double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm); const int ok_bhp = well_controls_add_new(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, ctrl); if (ok_resv != 0 && ok_bhp != 0) { well_state_.currentControls()[*rp] = 0; well_controls_set_current(ctrl, 0); } } } } } } if( wells() ) { for (int w = 0, nw = numWells(); w < nw; ++w) { WellControls* ctrl = wells()->ctrls[w]; const bool is_producer = wells()->type[w] == PRODUCER; if (!is_producer && wells()->name[w] != 0) { WellMap::const_iterator i = wmap.find(wells()->name[w]); if (i != wmap.end()) { const auto* wp = i->second; const WellInjectionProperties& injector = wp->getInjectionProperties(step); if (!injector.predictionMode) { //History matching WCONINJEH static const double invalid_alq = -std::numeric_limits::max(); static const int invalid_vfp = -std::numeric_limits::max(); // For WCONINJEH the BHP limit is set to a large number // or a value specified using WELTARG double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits::max(); const int ok_bhp = well_controls_add_new(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, ctrl); if (!ok_bhp) { OPM_THROW(std::runtime_error, "Failed to add well control."); } } } } } } } } // namespace Opm