/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2015 Andreas Lauser This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_SIMULATORBASE_HEADER_INCLUDED #define OPM_SIMULATORBASE_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template struct SimulatorTraits; /// Class collecting all necessary components for a two-phase simulation. template class SimulatorBase { typedef SimulatorTraits Traits; public: typedef typename Traits::ReservoirState ReservoirState; typedef typename Traits::WellState WellState; typedef typename Traits::OutputWriter OutputWriter; typedef typename Traits::Grid Grid; typedef typename Traits::Solver Solver; /// Initialise from parameters and objects to observe. /// \param[in] param parameters, this class accepts the following: /// parameter (default) effect /// ----------------------------------------------------------- /// output (true) write output to files? /// output_dir ("output") output directoty /// output_interval (1) output every nth step /// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal) /// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal) /// nl_pressure_maxiter (10) max nonlinear iterations in pressure /// nl_maxiter (30) max nonlinear iterations in transport /// nl_tolerance (1e-9) transport solver absolute residual tolerance /// num_transport_substeps (1) number of transport steps per pressure step /// use_segregation_split (false) solve for gravity segregation (if false, /// segregation is ignored). /// /// \param[in] grid grid data structure /// \param[in] geo derived geological properties /// \param[in] props fluid and rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] linsolver linear solver /// \param[in] gravity if non-null, gravity vector /// \param[in] disgas true for dissolved gas option /// \param[in] vapoil true for vaporized oil option /// \param[in] eclipse_state /// \param[in] output_writer /// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow SimulatorBase(const parameter::ParameterGroup& param, const Grid& grid, const DerivedGeology& geo, BlackoilPropsAdInterface& props, const RockCompressibility* rock_comp_props, NewtonIterationBlackoilInterface& linsolver, const double* gravity, const bool disgas, const bool vapoil, std::shared_ptr eclipse_state, OutputWriter& output_writer, const std::vector& threshold_pressures_by_face); /// Run the simulation. /// This will run succesive timesteps until timer.done() is true. It will /// modify the reservoir and well states. /// \param[in,out] timer governs the requested reporting timesteps /// \param[in,out] state state of reservoir: pressure, fluxes /// \param[in,out] well_state state of wells: bhp, perforation rates /// \return simulation report, with timing data SimulatorReport run(SimulatorTimer& timer, ReservoirState& state); protected: Implementation& asImpl() { return *static_cast(this); } const Implementation& asImpl() const { return *static_cast(this); } void handleAdditionalWellInflow(SimulatorTimer& timer, WellsManager& wells_manager, WellState& well_state, const Wells* wells); std::unique_ptr createSolver(const Wells* wells); void computeRESV(const std::size_t step, const Wells* wells, const BlackoilState& x, WellState& xw); // Data. typedef RateConverter:: SurfaceToReservoirVoidage< BlackoilPropsAdInterface, std::vector > RateConverterType; typedef typename Traits::Model Model; typedef typename Model::ModelParameters ModelParameters; typedef typename Solver::SolverParameters SolverParameters; const parameter::ParameterGroup param_; ModelParameters model_param_; SolverParameters solver_param_; // Observed objects. const Grid& grid_; BlackoilPropsAdInterface& props_; const RockCompressibility* rock_comp_props_; const double* gravity_; // Solvers const DerivedGeology& geo_; NewtonIterationBlackoilInterface& solver_; // Misc. data std::vector allcells_; const bool has_disgas_; const bool has_vapoil_; bool terminal_output_; // eclipse_state std::shared_ptr eclipse_state_; // output_writer OutputWriter& output_writer_; RateConverterType rateConverter_; // Threshold pressures. std::vector threshold_pressures_by_face_; //Vertical flow performance tables VFPProperties vfpProperties_; // Whether this a parallel simulation or not bool is_parallel_run_; }; } // namespace Opm #include "SimulatorBase_impl.hpp" #endif // OPM_SIMULATORBASE_HEADER_INCLUDED