// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \brief This file contains the flux module which is used for ECL problems * * This approach to fluxes is very specific to two-point flux approximation and applies * what the Eclipse Technical Description calls the "NEWTRAN" transmissibility approach. */ #ifndef EWOMS_ECL_FLUX_MODULE_HH #define EWOMS_ECL_FLUX_MODULE_HH #include #include #include #include #include #include #include #include #include #include namespace Opm { template class EclTransIntensiveQuantities; template class EclTransExtensiveQuantities; template class EclTransBaseProblem; /*! * \ingroup EclBlackOilSimulator * \brief Specifies a flux module which uses ECL transmissibilities. */ template struct EclTransFluxModule { using FluxIntensiveQuantities = EclTransIntensiveQuantities; using FluxExtensiveQuantities = EclTransExtensiveQuantities; using FluxBaseProblem = EclTransBaseProblem; /*! * \brief Register all run-time parameters for the flux module. */ static void registerParameters() { } }; /*! * \ingroup EclBlackOilSimulator * \brief Provides the defaults for the parameters required by the * transmissibility based volume flux calculation. */ template class EclTransBaseProblem { }; /*! * \ingroup EclBlackOilSimulator * \brief Provides the intensive quantities for the ECL flux module */ template class EclTransIntensiveQuantities { using ElementContext = GetPropType; protected: void update_(const ElementContext&, unsigned, unsigned) { } }; /*! * \ingroup EclBlackOilSimulator * \brief Provides the ECL flux module */ template class EclTransExtensiveQuantities { using Implementation = GetPropType; using IntensiveQuantities = GetPropType; using FluidSystem = GetPropType; using ElementContext = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using GridView = GetPropType; using MaterialLaw = GetPropType; enum { dimWorld = GridView::dimensionworld }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; enum { numPhases = FluidSystem::numPhases }; enum { enableSolvent = getPropValue() }; enum { enableExtbo = getPropValue() }; enum { enableEnergy = getPropValue() }; using Toolbox = MathToolbox; using DimVector = Dune::FieldVector; using EvalDimVector = Dune::FieldVector; using DimMatrix = Dune::FieldMatrix; public: /*! * \brief Return the intrinsic permeability tensor at a face [m^2] */ const DimMatrix& intrinsicPermeability() const { throw std::invalid_argument("The ECL transmissibility module does not provide an explicit intrinsic permeability"); } /*! * \brief Return the pressure potential gradient of a fluid phase at the * face's integration point [Pa/m] * * \param phaseIdx The index of the fluid phase */ const EvalDimVector& potentialGrad(unsigned) const { throw std::invalid_argument("The ECL transmissibility module does not provide explicit potential gradients"); } /*! * \brief Return the gravity corrected pressure difference between the interior and * the exterior of a face. * * \param phaseIdx The index of the fluid phase */ const Evaluation& pressureDifference(unsigned phaseIdx) const { return pressureDifference_[phaseIdx]; } /*! * \brief Return the filter velocity of a fluid phase at the face's integration point * [m/s] * * \param phaseIdx The index of the fluid phase */ const EvalDimVector& filterVelocity(unsigned) const { throw std::invalid_argument("The ECL transmissibility module does not provide explicit filter velocities"); } /*! * \brief Return the volume flux of a fluid phase at the face's integration point * \f$[m^3/s / m^2]\f$ * * This is the fluid volume of a phase per second and per square meter of face * area. * * \param phaseIdx The index of the fluid phase */ const Evaluation& volumeFlux(unsigned phaseIdx) const { return volumeFlux_[phaseIdx]; } protected: /*! * \brief Returns the local index of the degree of freedom in which is * in upstream direction. * * i.e., the DOF which exhibits a higher effective pressure for * the given phase. */ unsigned upstreamIndex_(unsigned phaseIdx) const { assert(phaseIdx < numPhases); return upIdx_[phaseIdx]; } /*! * \brief Returns the local index of the degree of freedom in which is * in downstream direction. * * i.e., the DOF which exhibits a lower effective pressure for the * given phase. */ unsigned downstreamIndex_(unsigned phaseIdx) const { assert(phaseIdx < numPhases); return dnIdx_[phaseIdx]; } void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); } void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); } public: static void volumeAndPhasePressureDifferences(std::array& upIdx, std::array& dnIdx, Evaluation (&volumeFlux)[numPhases], Evaluation (&pressureDifferences)[numPhases], const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { const auto& problem = elemCtx.problem(); const auto& stencil = elemCtx.stencil(timeIdx); const auto& scvf = stencil.interiorFace(scvfIdx); unsigned interiorDofIdx = scvf.interiorIndex(); unsigned exteriorDofIdx = scvf.exteriorIndex(); assert(interiorDofIdx != exteriorDofIdx); unsigned I = stencil.globalSpaceIndex(interiorDofIdx); unsigned J = stencil.globalSpaceIndex(exteriorDofIdx); Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx); Scalar faceArea = scvf.area(); Scalar thpres = problem.thresholdPressure(I, J); // estimate the gravity correction: for performance reasons we use a simplified // approach for this flux module that assumes that gravity is constant and always // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) Scalar g = elemCtx.problem().gravity()[dimWorld - 1]; const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx); const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx); // this is quite hacky because the dune grid interface does not provide a // cellCenterDepth() method (so we ask the problem to provide it). The "good" // solution would be to take the Z coordinate of the element centroids, but since // ECL seems to like to be inconsistent on that front, it needs to be done like // here... Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx); Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx); // the distances from the DOF's depths. (i.e., the additional depth of the // exterior DOF) Scalar distZ = zIn - zEx; Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0); Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0); for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; calculatePhasePressureDiff_(upIdx[phaseIdx], dnIdx[phaseIdx], pressureDifferences[phaseIdx], intQuantsIn, intQuantsEx, phaseIdx,//input interiorDofIdx,//input exteriorDofIdx,//input Vin, Vex, I, J, distZ*g, thpres); if (pressureDifferences[phaseIdx] == 0) { volumeFlux[phaseIdx] = 0.0; continue; } const bool upwindIsInterior = (static_cast(upIdx[phaseIdx]) == interiorDofIdx); const IntensiveQuantities& up = upwindIsInterior ? intQuantsIn : intQuantsEx; // TODO: should the rock compaction transmissibility multiplier be upstreamed // or averaged? all fluids should see the same compaction?! const Evaluation& transMult = up.rockCompTransMultiplier(); const auto& materialLawManager = problem.materialLawManager(); FaceDir::DirEnum facedir = FaceDir::DirEnum::Unknown; if (materialLawManager->hasDirectionalRelperms()) { facedir = scvf.faceDirFromDirId(); // direction (X, Y, or Z) of the face } if (upwindIsInterior) volumeFlux[phaseIdx] = pressureDifferences[phaseIdx]*up.mobility(phaseIdx, facedir)*transMult*(-trans/faceArea); else volumeFlux[phaseIdx] = pressureDifferences[phaseIdx]* (Toolbox::value(up.mobility(phaseIdx, facedir))*Toolbox::value(transMult)*(-trans/faceArea)); } } template static void calculatePhasePressureDiff_(short& upIdx, short& dnIdx, EvalType& pressureDifference, const IntensiveQuantities& intQuantsIn, const IntensiveQuantities& intQuantsEx, const unsigned phaseIdx, const unsigned interiorDofIdx, const unsigned exteriorDofIdx, const Scalar Vin, const Scalar Vex, const unsigned globalIndexIn, const unsigned globalIndexEx, const Scalar distZg, const Scalar thpres ) { // check shortcut: if the mobility of the phase is zero in the interior as // well as the exterior DOF, we can skip looking at the phase. if (intQuantsIn.mobility(phaseIdx) <= 0.0 && intQuantsEx.mobility(phaseIdx) <= 0.0) { upIdx = interiorDofIdx; dnIdx = exteriorDofIdx; pressureDifference = 0.0; return; } // do the gravity correction: compute the hydrostatic pressure for the // external at the depth of the internal one const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx); Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx)); Evaluation rhoAvg = (rhoIn + rhoEx)/2; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx); Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx)); if (enableExtbo) // added stability; particulary useful for solvent migrating in pure water // where the solvent fraction displays a 0/1 behaviour ... pressureExterior += Toolbox::value(rhoAvg)*(distZg); else pressureExterior += rhoAvg*(distZg); pressureDifference = pressureExterior - pressureInterior; // decide the upstream index for the phase. for this we make sure that the // degree of freedom which is regarded upstream if both pressures are equal // is always the same: if the pressure is equal, the DOF with the lower // global index is regarded to be the upstream one. if (pressureDifference > 0.0) { upIdx = exteriorDofIdx; dnIdx = interiorDofIdx; } else if (pressureDifference < 0.0) { upIdx = interiorDofIdx; dnIdx = exteriorDofIdx; } else { // if the pressure difference is zero, we chose the DOF which has the // larger volume associated to it as upstream DOF if (Vin > Vex) { upIdx = interiorDofIdx; dnIdx = exteriorDofIdx; } else if (Vin < Vex) { upIdx = exteriorDofIdx; dnIdx = interiorDofIdx; } else { assert(Vin == Vex); // if the volumes are also equal, we pick the DOF which exhibits the // smaller global index if (globalIndexIn < globalIndexEx) { upIdx = interiorDofIdx; dnIdx = exteriorDofIdx; } else { upIdx = exteriorDofIdx; dnIdx = interiorDofIdx; } } } // apply the threshold pressure for the intersection. note that the concept // of threshold pressure is a quite big hack that only makes sense for ECL // datasets. (and even there, its physical justification is quite // questionable IMO.) if (std::abs(Toolbox::value(pressureDifference)) > thpres) { if (pressureDifference < 0.0) pressureDifference += thpres; else pressureDifference -= thpres; } else { pressureDifference = 0.0; } } protected: /*! * \brief Update the required gradients for interior faces */ void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { Valgrind::SetUndefined(*this); volumeAndPhasePressureDifferences(upIdx_ , dnIdx_, volumeFlux_, pressureDifference_, elemCtx, scvfIdx, timeIdx); } /*! * \brief Update the required gradients for boundary faces */ template void calculateBoundaryGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx, const FluidState& exFluidState) { const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(scvfIdx); const Scalar faceArea = scvf.area(); const Scalar zEx = scvf.integrationPos()[dimWorld - 1]; const auto& problem = elemCtx.problem(); const unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(0, timeIdx); const auto& intQuantsIn = elemCtx.intensiveQuantities(0, timeIdx); calculateBoundaryGradients_(problem, globalSpaceIdx, intQuantsIn, scvfIdx, faceArea, zEx, exFluidState, upIdx_, dnIdx_, volumeFlux_, pressureDifference_); // Treating solvent here and not in the static method, since that would require more // extensive refactoring. It means that the TpfaLinearizer will not support bcs for solvent until this is // addressed. if constexpr (enableSolvent) { if (upIdx_[gasPhaseIdx] == 0) { const Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, scvfIdx); const Scalar transModified = trans * Toolbox::value(intQuantsIn.rockCompTransMultiplier()); const auto solventFlux = pressureDifference_[gasPhaseIdx] * intQuantsIn.mobility(gasPhaseIdx) * (-transModified/faceArea); asImp_().setSolventVolumeFlux(solventFlux); } else { asImp_().setSolventVolumeFlux(0.0); } } } public: /*! * \brief Update the required gradients for boundary faces */ template static void calculateBoundaryGradients_(const Problem& problem, const unsigned globalSpaceIdx, const IntensiveQuantities& intQuantsIn, const unsigned bfIdx, const double faceArea, const double zEx, const FluidState& exFluidState, std::array& upIdx, std::array& dnIdx, EvaluationContainer& volumeFlux, EvaluationContainer& pressureDifference) { bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions(); if (!enableBoundaryMassFlux) return; Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, bfIdx); // estimate the gravity correction: for performance reasons we use a simplified // approach for this flux module that assumes that gravity is constant and always // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) Scalar g = problem.gravity()[dimWorld - 1]; // this is quite hacky because the dune grid interface does not provide a // cellCenterDepth() method (so we ask the problem to provide it). The "good" // solution would be to take the Z coordinate of the element centroids, but since // ECL seems to like to be inconsistent on that front, it needs to be done like // here... Scalar zIn = problem.dofCenterDepth(globalSpaceIdx); // the distances from the DOF's depths. (i.e., the additional depth of the // exterior DOF) Scalar distZ = zIn - zEx; for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; // do the gravity correction: compute the hydrostatic pressure for the // integration position const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx); const auto& rhoEx = exFluidState.density(phaseIdx); Evaluation rhoAvg = (rhoIn + rhoEx)/2; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx); Evaluation pressureExterior = exFluidState.pressure(phaseIdx); pressureExterior += rhoAvg*(distZ*g); pressureDifference[phaseIdx] = pressureExterior - pressureInterior; // decide the upstream index for the phase. for this we make sure that the // degree of freedom which is regarded upstream if both pressures are equal // is always the same: if the pressure is equal, the DOF with the lower // global index is regarded to be the upstream one. const unsigned interiorDofIdx = 0; // Valid only for cell-centered FV. if (pressureDifference[phaseIdx] > 0.0) { upIdx[phaseIdx] = -1; dnIdx[phaseIdx] = interiorDofIdx; } else { upIdx[phaseIdx] = interiorDofIdx; dnIdx[phaseIdx] = -1; } Evaluation transModified = trans; if (upIdx[phaseIdx] == interiorDofIdx) { // this is slightly hacky because in the automatic differentiation case, it // only works for the element centered finite volume method. for ebos this // does not matter, though. const auto& up = intQuantsIn; // deal with water induced rock compaction const Scalar transMult = Toolbox::value(up.rockCompTransMultiplier()); transModified *= transMult; volumeFlux[phaseIdx] = pressureDifference[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea); } else { // compute the phase mobility using the material law parameters of the // interior element. TODO: this could probably be done more efficiently const auto& matParams = problem.materialLawParams(globalSpaceIdx); std::array kr; MaterialLaw::relativePermeabilities(kr, matParams, exFluidState); const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx); volumeFlux[phaseIdx] = pressureDifference[phaseIdx]*mob*(-transModified/faceArea); } } } protected: /*! * \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context */ void calculateFluxes_(const ElementContext&, unsigned, unsigned) { } void calculateBoundaryFluxes_(const ElementContext&, unsigned, unsigned) {} private: Implementation& asImp_() { return *static_cast(this); } const Implementation& asImp_() const { return *static_cast(this); } // the volumetric flux of all phases [m^3/s] Evaluation volumeFlux_[numPhases]; // the difference in effective pressure between the exterior and the interior degree // of freedom [Pa] Evaluation pressureDifference_[numPhases]; // the local indices of the interior and exterior degrees of freedom std::array upIdx_; std::array dnIdx_; }; } // namespace Opm #endif