// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the flux module which is used for ECL problems
*
* This approach to fluxes is very specific to two-point flux approximation and applies
* what the Eclipse Technical Description calls the "NEWTRAN" transmissibility approach.
*/
#ifndef EWOMS_ECL_FLUX_MODULE_HH
#define EWOMS_ECL_FLUX_MODULE_HH
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class EclTransIntensiveQuantities;
template
class EclTransExtensiveQuantities;
template
class EclTransBaseProblem;
/*!
* \ingroup EclBlackOilSimulator
* \brief Specifies a flux module which uses ECL transmissibilities.
*/
template
struct EclTransFluxModule
{
using FluxIntensiveQuantities = EclTransIntensiveQuantities;
using FluxExtensiveQuantities = EclTransExtensiveQuantities;
using FluxBaseProblem = EclTransBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup EclBlackOilSimulator
* \brief Provides the defaults for the parameters required by the
* transmissibility based volume flux calculation.
*/
template
class EclTransBaseProblem
{ };
/*!
* \ingroup EclBlackOilSimulator
* \brief Provides the intensive quantities for the ECL flux module
*/
template
class EclTransIntensiveQuantities
{
using ElementContext = GetPropType;
protected:
void update_(const ElementContext&, unsigned, unsigned)
{ }
};
/*!
* \ingroup EclBlackOilSimulator
* \brief Provides the ECL flux module
*/
template
class EclTransExtensiveQuantities
{
using Implementation = GetPropType;
using IntensiveQuantities = GetPropType;
using FluidSystem = GetPropType;
using ElementContext = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using GridView = GetPropType;
using MaterialLaw = GetPropType;
enum { dimWorld = GridView::dimensionworld };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { numPhases = FluidSystem::numPhases };
enum { enableSolvent = getPropValue() };
enum { enableExtbo = getPropValue() };
enum { enableEnergy = getPropValue() };
using Toolbox = MathToolbox;
using DimVector = Dune::FieldVector;
using EvalDimVector = Dune::FieldVector;
using DimMatrix = Dune::FieldMatrix;
public:
/*!
* \brief Return the intrinsic permeability tensor at a face [m^2]
*/
const DimMatrix& intrinsicPermeability() const
{
throw std::invalid_argument("The ECL transmissibility module does not provide an explicit intrinsic permeability");
}
/*!
* \brief Return the pressure potential gradient of a fluid phase at the
* face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& potentialGrad(unsigned) const
{
throw std::invalid_argument("The ECL transmissibility module does not provide explicit potential gradients");
}
/*!
* \brief Return the gravity corrected pressure difference between the interior and
* the exterior of a face.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& pressureDifference(unsigned phaseIdx) const
{ return pressureDifference_[phaseIdx]; }
/*!
* \brief Return the filter velocity of a fluid phase at the face's integration point
* [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& filterVelocity(unsigned) const
{
throw std::invalid_argument("The ECL transmissibility module does not provide explicit filter velocities");
}
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& volumeFlux(unsigned phaseIdx) const
{ return volumeFlux_[phaseIdx]; }
protected:
/*!
* \brief Returns the local index of the degree of freedom in which is
* in upstream direction.
*
* i.e., the DOF which exhibits a higher effective pressure for
* the given phase.
*/
unsigned upstreamIndex_(unsigned phaseIdx) const
{
assert(phaseIdx < numPhases);
return upIdx_[phaseIdx];
}
/*!
* \brief Returns the local index of the degree of freedom in which is
* in downstream direction.
*
* i.e., the DOF which exhibits a lower effective pressure for the
* given phase.
*/
unsigned downstreamIndex_(unsigned phaseIdx) const
{
assert(phaseIdx < numPhases);
return dnIdx_[phaseIdx];
}
void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); }
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); }
public:
static void volumeAndPhasePressureDifferences(std::array& upIdx,
std::array& dnIdx,
Evaluation (&volumeFlux)[numPhases],
Evaluation (&pressureDifferences)[numPhases],
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const auto& problem = elemCtx.problem();
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
unsigned interiorDofIdx = scvf.interiorIndex();
unsigned exteriorDofIdx = scvf.exteriorIndex();
assert(interiorDofIdx != exteriorDofIdx);
unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
Scalar faceArea = scvf.area();
Scalar thpres = problem.thresholdPressure(I, J);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
calculatePhasePressureDiff_(upIdx[phaseIdx],
dnIdx[phaseIdx],
pressureDifferences[phaseIdx],
intQuantsIn,
intQuantsEx,
phaseIdx,//input
interiorDofIdx,//input
exteriorDofIdx,//input
Vin,
Vex,
I,
J,
distZ*g,
thpres);
if (pressureDifferences[phaseIdx] == 0) {
volumeFlux[phaseIdx] = 0.0;
continue;
}
const bool upwindIsInterior = (static_cast(upIdx[phaseIdx]) == interiorDofIdx);
const IntensiveQuantities& up = upwindIsInterior ? intQuantsIn : intQuantsEx;
// TODO: should the rock compaction transmissibility multiplier be upstreamed
// or averaged? all fluids should see the same compaction?!
const Evaluation& transMult = up.rockCompTransMultiplier();
const auto& materialLawManager = problem.materialLawManager();
FaceDir::DirEnum facedir = FaceDir::DirEnum::Unknown;
if (materialLawManager->hasDirectionalRelperms()) {
facedir = scvf.faceDirFromDirId(); // direction (X, Y, or Z) of the face
}
if (upwindIsInterior)
volumeFlux[phaseIdx] =
pressureDifferences[phaseIdx]*up.mobility(phaseIdx, facedir)*transMult*(-trans/faceArea);
else
volumeFlux[phaseIdx] =
pressureDifferences[phaseIdx]*
(Toolbox::value(up.mobility(phaseIdx, facedir))*Toolbox::value(transMult)*(-trans/faceArea));
}
}
template
static void calculatePhasePressureDiff_(short& upIdx,
short& dnIdx,
EvalType& pressureDifference,
const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx,
const unsigned phaseIdx,
const unsigned interiorDofIdx,
const unsigned exteriorDofIdx,
const Scalar Vin,
const Scalar Vex,
const unsigned globalIndexIn,
const unsigned globalIndexEx,
const Scalar distZg,
const Scalar thpres
)
{
// check shortcut: if the mobility of the phase is zero in the interior as
// well as the exterior DOF, we can skip looking at the phase.
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
intQuantsEx.mobility(phaseIdx) <= 0.0)
{
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
pressureDifference = 0.0;
return;
}
// do the gravity correction: compute the hydrostatic pressure for the
// external at the depth of the internal one
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
if (enableExtbo) // added stability; particulary useful for solvent migrating in pure water
// where the solvent fraction displays a 0/1 behaviour ...
pressureExterior += Toolbox::value(rhoAvg)*(distZg);
else
pressureExterior += rhoAvg*(distZg);
pressureDifference = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference > 0.0) {
upIdx = exteriorDofIdx;
dnIdx = interiorDofIdx;
}
else if (pressureDifference < 0.0) {
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
}
else {
// if the pressure difference is zero, we chose the DOF which has the
// larger volume associated to it as upstream DOF
if (Vin > Vex) {
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
}
else if (Vin < Vex) {
upIdx = exteriorDofIdx;
dnIdx = interiorDofIdx;
}
else {
assert(Vin == Vex);
// if the volumes are also equal, we pick the DOF which exhibits the
// smaller global index
if (globalIndexIn < globalIndexEx) {
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
}
else {
upIdx = exteriorDofIdx;
dnIdx = interiorDofIdx;
}
}
}
// apply the threshold pressure for the intersection. note that the concept
// of threshold pressure is a quite big hack that only makes sense for ECL
// datasets. (and even there, its physical justification is quite
// questionable IMO.)
if (std::abs(Toolbox::value(pressureDifference)) > thpres) {
if (pressureDifference < 0.0)
pressureDifference += thpres;
else
pressureDifference -= thpres;
}
else {
pressureDifference = 0.0;
}
}
protected:
/*!
* \brief Update the required gradients for interior faces
*/
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
Valgrind::SetUndefined(*this);
volumeAndPhasePressureDifferences(upIdx_ , dnIdx_, volumeFlux_, pressureDifference_, elemCtx, scvfIdx, timeIdx);
}
/*!
* \brief Update the required gradients for boundary faces
*/
template
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx,
const FluidState& exFluidState)
{
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(scvfIdx);
const Scalar faceArea = scvf.area();
const Scalar zEx = scvf.integrationPos()[dimWorld - 1];
const auto& problem = elemCtx.problem();
const unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(0, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(0, timeIdx);
calculateBoundaryGradients_(problem,
globalSpaceIdx,
intQuantsIn,
scvfIdx,
faceArea,
zEx,
exFluidState,
upIdx_,
dnIdx_,
volumeFlux_,
pressureDifference_);
// Treating solvent here and not in the static method, since that would require more
// extensive refactoring. It means that the TpfaLinearizer will not support bcs for solvent until this is
// addressed.
if constexpr (enableSolvent) {
if (upIdx_[gasPhaseIdx] == 0) {
const Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, scvfIdx);
const Scalar transModified = trans * Toolbox::value(intQuantsIn.rockCompTransMultiplier());
const auto solventFlux = pressureDifference_[gasPhaseIdx] * intQuantsIn.mobility(gasPhaseIdx) * (-transModified/faceArea);
asImp_().setSolventVolumeFlux(solventFlux);
} else {
asImp_().setSolventVolumeFlux(0.0);
}
}
}
public:
/*!
* \brief Update the required gradients for boundary faces
*/
template
static void calculateBoundaryGradients_(const Problem& problem,
const unsigned globalSpaceIdx,
const IntensiveQuantities& intQuantsIn,
const unsigned bfIdx,
const double faceArea,
const double zEx,
const FluidState& exFluidState,
std::array& upIdx,
std::array& dnIdx,
EvaluationContainer& volumeFlux,
EvaluationContainer& pressureDifference)
{
bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions();
if (!enableBoundaryMassFlux)
return;
Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, bfIdx);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = problem.gravity()[dimWorld - 1];
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(globalSpaceIdx);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
// do the gravity correction: compute the hydrostatic pressure for the
// integration position
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
const auto& rhoEx = exFluidState.density(phaseIdx);
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
pressureExterior += rhoAvg*(distZ*g);
pressureDifference[phaseIdx] = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
const unsigned interiorDofIdx = 0; // Valid only for cell-centered FV.
if (pressureDifference[phaseIdx] > 0.0) {
upIdx[phaseIdx] = -1;
dnIdx[phaseIdx] = interiorDofIdx;
}
else {
upIdx[phaseIdx] = interiorDofIdx;
dnIdx[phaseIdx] = -1;
}
Evaluation transModified = trans;
if (upIdx[phaseIdx] == interiorDofIdx) {
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
// does not matter, though.
const auto& up = intQuantsIn;
// deal with water induced rock compaction
const Scalar transMult = Toolbox::value(up.rockCompTransMultiplier());
transModified *= transMult;
volumeFlux[phaseIdx] =
pressureDifference[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
}
else {
// compute the phase mobility using the material law parameters of the
// interior element. TODO: this could probably be done more efficiently
const auto& matParams = problem.materialLawParams(globalSpaceIdx);
std::array kr;
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
volumeFlux[phaseIdx] =
pressureDifference[phaseIdx]*mob*(-transModified/faceArea);
}
}
}
protected:
/*!
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
*/
void calculateFluxes_(const ElementContext&, unsigned, unsigned)
{ }
void calculateBoundaryFluxes_(const ElementContext&, unsigned, unsigned)
{}
private:
Implementation& asImp_()
{ return *static_cast(this); }
const Implementation& asImp_() const
{ return *static_cast(this); }
// the volumetric flux of all phases [m^3/s]
Evaluation volumeFlux_[numPhases];
// the difference in effective pressure between the exterior and the interior degree
// of freedom [Pa]
Evaluation pressureDifference_[numPhases];
// the local indices of the interior and exterior degrees of freedom
std::array upIdx_;
std::array dnIdx_;
};
} // namespace Opm
#endif