// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the flux module which is used for ECL problems
*
* This approach to fluxes is very specific to two-point flux approximation and applies
* what the Eclipse Technical Description calls the "NEWTRAN" transmissibility approach.
*/
#ifndef EWOMS_ECL_FLUX_MODULE_HH
#define EWOMS_ECL_FLUX_MODULE_HH
#include
#include
#include
#include
#include
#include
#include
BEGIN_PROPERTIES
NEW_PROP_TAG(MaterialLaw);
END_PROPERTIES
namespace Opm {
template
class EclTransIntensiveQuantities;
template
class EclTransExtensiveQuantities;
template
class EclTransBaseProblem;
/*!
* \ingroup EclBlackOilSimulator
* \brief Specifies a flux module which uses ECL transmissibilities.
*/
template
struct EclTransFluxModule
{
typedef EclTransIntensiveQuantities FluxIntensiveQuantities;
typedef EclTransExtensiveQuantities FluxExtensiveQuantities;
typedef EclTransBaseProblem FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup EclBlackOilSimulator
* \brief Provides the defaults for the parameters required by the
* transmissibility based volume flux calculation.
*/
template
class EclTransBaseProblem
{ };
/*!
* \ingroup EclBlackOilSimulator
* \brief Provides the intensive quantities for the ECL flux module
*/
template
class EclTransIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
void update_(const ElementContext& elemCtx OPM_UNUSED, unsigned dofIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \ingroup EclBlackOilSimulator
* \brief Provides the ECL flux module
*/
template
class EclTransExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
enum { dimWorld = GridView::dimensionworld };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { numPhases = FluidSystem::numPhases };
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::MathToolbox Toolbox;
typedef Dune::FieldVector DimVector;
typedef Dune::FieldVector EvalDimVector;
typedef Dune::FieldMatrix DimMatrix;
public:
/*!
* \brief Return the intrinsic permeability tensor at a face [m^2]
*/
const DimMatrix& intrinsicPermeability() const
{
throw std::invalid_argument("The ECL transmissibility module does not provide an explicit intrinsic permeability");
}
/*!
* \brief Return the pressure potential gradient of a fluid phase at the
* face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& potentialGrad(unsigned phaseIdx OPM_UNUSED) const
{
throw std::invalid_argument("The ECL transmissibility module does not provide explicit potential gradients");
}
/*!
* \brief Return the gravity corrected pressure difference between the interior and
* the exterior of a face.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& pressureDifference(unsigned phaseIdx) const
{ return pressureDifference_[phaseIdx]; }
/*!
* \brief Return the filter velocity of a fluid phase at the face's integration point
* [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& filterVelocity(unsigned phaseIdx OPM_UNUSED) const
{
throw std::invalid_argument("The ECL transmissibility module does not provide explicit filter velocities");
}
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& volumeFlux(unsigned phaseIdx) const
{ return volumeFlux_[phaseIdx]; }
protected:
/*!
* \brief Returns the local index of the degree of freedom in which is
* in upstream direction.
*
* i.e., the DOF which exhibits a higher effective pressure for
* the given phase.
*/
unsigned upstreamIndex_(unsigned phaseIdx) const
{
assert(0 <= phaseIdx && phaseIdx < numPhases);
return upIdx_[phaseIdx];
}
/*!
* \brief Returns the local index of the degree of freedom in which is
* in downstream direction.
*
* i.e., the DOF which exhibits a lower effective pressure for the
* given phase.
*/
unsigned downstreamIndex_(unsigned phaseIdx) const
{
assert(0 <= phaseIdx && phaseIdx < numPhases);
return dnIdx_[phaseIdx];
}
void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); }
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); }
/*!
* \brief Update the required gradients for interior faces
*/
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
Opm::Valgrind::SetUndefined(*this);
const auto& problem = elemCtx.problem();
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
interiorDofIdx_ = scvf.interiorIndex();
exteriorDofIdx_ = scvf.exteriorIndex();
assert(interiorDofIdx_ != exteriorDofIdx_);
unsigned I = stencil.globalSpaceIndex(interiorDofIdx_);
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx_, exteriorDofIdx_);
Scalar faceArea = scvf.area();
Scalar thpres = problem.thresholdPressure(I, J);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx_, timeIdx);
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx_, timeIdx);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
// check shortcut: if the mobility of the phase is zero in the interior as
// well as the exterior DOF, we can skip looking at the phase.
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
intQuantsEx.mobility(phaseIdx) <= 0.0)
{
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
pressureDifference_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
// do the gravity correction: compute the hydrostatic pressure for the
// external at the depth of the internal one
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
pressureExterior += rhoAvg*(distZ*g);
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference_[phaseIdx] > 0.0) {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else if (pressureDifference_[phaseIdx] < 0.0) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else {
// if the pressure difference is zero, we chose the DOF which has the
// larger volume associated to it as upstream DOF
Scalar Vin = elemCtx.dofVolume(interiorDofIdx_, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx_, /*timeIdx=*/0);
if (Vin > Vex) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else if (Vin < Vex) {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else {
assert(Vin == Vex);
// if the volumes are also equal, we pick the DOF which exhibits the
// smaller global index
if (I < J) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
}
}
// apply the threshold pressure for the intersection. note that the concept
// of threshold pressure is a quite big hack that only makes sense for ECL
// datasets. (and even there, its physical justification is quite
// questionable IMO.)
if (std::abs(Toolbox::value(pressureDifference_[phaseIdx])) > thpres) {
if (pressureDifference_[phaseIdx] < 0.0)
pressureDifference_[phaseIdx] += thpres;
else
pressureDifference_[phaseIdx] -= thpres;
}
else {
pressureDifference_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
// does not matter, though.
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
// TODO: should the rock compaction transmissibility multiplier be upstreamed
// or averaged? all fluids should see the same compaction?!
const Evaluation& transMult =
problem.template rockCompTransMultiplier(up, stencil.globalSpaceIndex(upstreamIdx));
if (upstreamIdx == interiorDofIdx_)
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*transMult*(-trans/faceArea);
else
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea));
}
}
/*!
* \brief Update the required gradients for boundary faces
*/
template
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx,
const FluidState& exFluidState)
{
const auto& problem = elemCtx.problem();
bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions();
if (!enableBoundaryMassFlux)
return;
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.boundaryFace(scvfIdx);
interiorDofIdx_ = scvf.interiorIndex();
Scalar trans = problem.transmissibilityBoundary(elemCtx, scvfIdx);
Scalar faceArea = scvf.area();
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx_, timeIdx);
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
// do the gravity correction: compute the hydrostatic pressure for the
// integration position
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
const auto& rhoEx = exFluidState.density(phaseIdx);
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
pressureExterior += rhoAvg*(distZ*g);
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference_[phaseIdx] > 0.0) {
upIdx_[phaseIdx] = -1;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = -1;
}
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
// does not matter, though.
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
Evaluation transModified = trans;
// deal with water induced rock compaction
transModified *= problem.template rockCompTransMultiplier(up, stencil.globalSpaceIndex(upstreamIdx));
if (upstreamIdx == interiorDofIdx_) {
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
if (enableSolvent && phaseIdx == gasPhaseIdx)
asImp_().setSolventVolumeFlux( pressureDifference_[phaseIdx]*up.solventMobility()*(-transModified/faceArea));
}
else {
// compute the phase mobility using the material law parameters of the
// interior element. TODO: this could probably be done more efficiently
const auto& matParams =
elemCtx.problem().materialLawParams(elemCtx,
interiorDofIdx_,
/*timeIdx=*/0);
typename FluidState::Scalar kr[numPhases];
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*mob*(-transModified/faceArea);
// Solvent inflow is not yet supported
if (enableSolvent && phaseIdx == gasPhaseIdx)
asImp_().setSolventVolumeFlux(0.0);
}
}
}
/*!
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
*/
void calculateFluxes_(const ElementContext& elemCtx OPM_UNUSED, unsigned scvfIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED)
{ }
void calculateBoundaryFluxes_(const ElementContext& elemCtx OPM_UNUSED, unsigned scvfIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED)
{}
private:
Implementation& asImp_()
{ return *static_cast(this); }
const Implementation& asImp_() const
{ return *static_cast(this); }
// the volumetric flux of all phases [m^3/s]
Evaluation volumeFlux_[numPhases];
// the difference in effective pressure between the exterior and the interior degree
// of freedom [Pa]
Evaluation pressureDifference_[numPhases];
// the local indices of the interior and exterior degrees of freedom
unsigned short interiorDofIdx_;
unsigned short exteriorDofIdx_;
unsigned short upIdx_[numPhases];
unsigned short dnIdx_[numPhases];
};
} // namespace Opm
#endif