// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Opm::EclTracerModel
*/
#ifndef EWOMS_ECL_TRACER_MODEL_HH
#define EWOMS_ECL_TRACER_MODEL_HH
#include
#include
#include
#include
namespace Opm::Properties {
template
struct EnableTracerModel {
using type = UndefinedProperty;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief A class which handles tracers as specified in by ECL
*
* TODO: MPI parallelism.
*/
template
class EclTracerModel : public EclGenericTracerModel,
GetPropType,
GetPropType,
GetPropType,
GetPropType>
{
using BaseType = EclGenericTracerModel,
GetPropType,
GetPropType,
GetPropType,
GetPropType>;
using Simulator = GetPropType;
using GridView = GetPropType;
using Grid = GetPropType;
using Scalar = GetPropType;
using Stencil = GetPropType;
using FluidSystem = GetPropType;
using ElementContext = GetPropType;
using RateVector = GetPropType;
using Indices = GetPropType;
using TracerEvaluation = DenseAd::Evaluation;
using TracerVector = typename BaseType::TracerVector;
enum { numEq = getPropValue() };
enum { numPhases = FluidSystem::numPhases };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
public:
EclTracerModel(Simulator& simulator)
: BaseType(simulator.vanguard().gridView(),
simulator.vanguard().eclState(),
simulator.vanguard().cartesianIndexMapper(),
simulator.model().dofMapper())
, simulator_(simulator)
, wat_(TracerBatch(waterPhaseIdx))
, oil_(TracerBatch(oilPhaseIdx))
, gas_(TracerBatch(gasPhaseIdx))
{ }
/*!
* \brief Initialize all internal data structures needed by the tracer module
*/
void init()
{
bool enabled = EWOMS_GET_PARAM(TypeTag, bool, EnableTracerModel);
this->doInit(enabled, simulator_.model().numGridDof(),
gasPhaseIdx, oilPhaseIdx, waterPhaseIdx);
prepareTracerBatches();
}
void beginTimeStep()
{
if (this->numTracers()==0)
return;
updateStorageCache(wat_);
updateStorageCache(oil_);
updateStorageCache(gas_);
}
/*!
* \brief Informs the tracer model that a time step has just been finished.
*/
void endTimeStep()
{
if (this->numTracers()==0)
return;
advanceTracerFields(wat_);
advanceTracerFields(oil_);
advanceTracerFields(gas_);
}
/*!
* \brief This method writes the complete state of all tracer
* to the hard disk.
*/
template
void serialize(Restarter&)
{ /* not implemented */ }
/*!
* \brief This method restores the complete state of the tracer
* from disk.
*
* It is the inverse of the serialize() method.
*/
template
void deserialize(Restarter&)
{ /* not implemented */ }
protected:
// evaluate water storage volume(s) in a single cell
template
void computeVolume_(LhsEval& freeVolume,
const int tracerPhaseIdx,
const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
const auto& intQuants = elemCtx.intensiveQuantities(scvIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar phaseVolume =
decay(fs.saturation(tracerPhaseIdx))
*decay(fs.invB(tracerPhaseIdx))
*decay(intQuants.porosity());
// avoid singular matrix if no water is present.
phaseVolume = max(phaseVolume, 1e-10);
if (std::is_same::value)
freeVolume = phaseVolume;
else
freeVolume = phaseVolume * variable(1.0, 0);
}
// evaluate the flux(es) over one face
void computeFlux_(TracerEvaluation & freeFlux,
bool & isUpFree,
const int tracerPhaseIdx,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned inIdx = extQuants.interiorIndex();
unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar A = scvf.area();
Scalar v = decay(extQuants.volumeFlux(tracerPhaseIdx));
Scalar b = decay(fs.invB(tracerPhaseIdx));
if (inIdx == upIdx) {
freeFlux = A*v*b*variable(1.0, 0);
isUpFree = true;
}
else {
freeFlux = A*v*b*1.0;
isUpFree = false;
}
}
template
void assembleTracerEquations_(TrRe & tr)
{
if (tr.numTracer() == 0)
return;
// Note that we formulate the equations in terms of a concentration update
// (compared to previous time step) and not absolute concentration.
// This implies that current concentration (tr.concentration_[][]) contributes
// to the rhs both through storrage and flux terms.
// Compare also advanceTracerFields(...) below.
(*this->tracerMatrix_) = 0.0;
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx)
tr.residual_[tIdx] = 0.0;
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridView().template begin*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
Scalar extrusionFactor =
elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor();
Valgrind::CheckDefined(extrusionFactor);
assert(isfinite(extrusionFactor));
assert(extrusionFactor > 0.0);
Scalar scvVolume =
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume()
* extrusionFactor;
Scalar dt = elemCtx.simulator().timeStepSize();
size_t I = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timIdx=*/0);
size_t I1 = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timIdx=*/1);
std::vector storageOfTimeIndex1(tr.numTracer());
if (elemCtx.enableStorageCache()) {
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
storageOfTimeIndex1[tIdx] = tr.storageOfTimeIndex1_[tIdx][I];
}
}
else {
Scalar fVolume1;
computeVolume_(fVolume1, tr.phaseIdx_, elemCtx, 0, /*timIdx=*/1);
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
storageOfTimeIndex1[tIdx] = fVolume1*tr.concentrationInitial_[tIdx][I1];
}
}
TracerEvaluation fVolume;
computeVolume_(fVolume, tr.phaseIdx_, elemCtx, 0, /*timIdx=*/0);
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
Scalar storageOfTimeIndex0 = fVolume.value()*tr.concentration_[tIdx][I];
Scalar localStorage = (storageOfTimeIndex0 - storageOfTimeIndex1[tIdx]) * scvVolume/dt;
tr.residual_[tIdx][I][0] += localStorage; //residual + flux
}
(*this->tracerMatrix_)[I][I][0][0] += fVolume.derivative(0) * scvVolume/dt;
size_t numInteriorFaces = elemCtx.numInteriorFaces(/*timIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
TracerEvaluation flux;
const auto& face = elemCtx.stencil(0).interiorFace(scvfIdx);
unsigned j = face.exteriorIndex();
unsigned J = elemCtx.globalSpaceIndex(/*dofIdx=*/ j, /*timIdx=*/0);
bool isUpF;
computeFlux_(flux, isUpF, tr.phaseIdx_, elemCtx, scvfIdx, 0);
int globalUpIdx = isUpF ? I : J;
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
tr.residual_[tIdx][I][0] += flux.value()*tr.concentration_[tIdx][globalUpIdx]; //residual + flux
}
if (isUpF) {
(*this->tracerMatrix_)[J][I][0][0] = -flux.derivative(0);
(*this->tracerMatrix_)[I][I][0][0] += flux.derivative(0);
}
}
}
// Wells terms
const int episodeIdx = simulator_.episodeIndex();
const auto& wells = simulator_.vanguard().schedule().getWells(episodeIdx);
for (const auto& well : wells) {
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
this->wellTracerRate_[std::make_pair(well.name(),this->tracerNames_[tr.idx_[tIdx]])] = 0.0;
}
if (well.getStatus() == Well::Status::SHUT)
continue;
if (!simulator_.problem().wellModel().hasWell(well.name()))
continue;
const auto& wellPtr = simulator_.problem().wellModel().getWell(well.name());
std::vector wtracer(tr.numTracer());
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
wtracer[tIdx] = well.getTracerProperties().getConcentration(this->tracerNames_[tr.idx_[tIdx]]);
}
std::array cartesianCoordinate;
for (auto& connection : well.getConnections()) {
if (connection.state() == Connection::State::SHUT)
continue;
cartesianCoordinate[0] = connection.getI();
cartesianCoordinate[1] = connection.getJ();
cartesianCoordinate[2] = connection.getK();
const size_t cartIdx = simulator_.vanguard().cartesianIndex(cartesianCoordinate);
const int I = this->cartToGlobal_[cartIdx];
Scalar rate = wellPtr->volumetricSurfaceRateForConnection(I, tr.phaseIdx_);
if (rate > 0) {
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
tr.residual_[tIdx][I][0] -= rate*wtracer[tIdx];
// Store _injector_ tracer rate for reporting
this->wellTracerRate_.at(std::make_pair(well.name(),this->tracerNames_[tr.idx_[tIdx]])) += rate*wtracer[tIdx];
}
}
else if (rate < 0) {
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
tr.residual_[tIdx][I][0] -= rate*tr.concentration_[tIdx][I];
}
(*this->tracerMatrix_)[I][I][0][0] -= rate*variable(1.0, 0).derivative(0);
}
}
}
}
template
void updateStorageCache(TrRe & tr)
{
if (tr.numTracer() == 0)
return;
tr.concentrationInitial_ = tr.concentration_;
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridView().template begin*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
int globalDofIdx = elemCtx.globalSpaceIndex(0, /*timIdx=*/0);
Scalar fVolume;
computeVolume_(fVolume, tr.phaseIdx_, elemCtx, 0, /*timIdx=*/0);
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
tr.storageOfTimeIndex1_[tIdx][globalDofIdx] = fVolume*tr.concentrationInitial_[tIdx][globalDofIdx];
}
}
}
template
void advanceTracerFields(TrRe & tr)
{
if (tr.numTracer() == 0)
return;
// Note that we solve for a concentration update (compared to previous time step)
// Confer also assembleTracerEquations_(...) above.
std::vector dx(tr.concentration_);
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx)
dx[tIdx] = 0.0;
assembleTracerEquations_(tr);
bool converged = this->linearSolveBatchwise_(*this->tracerMatrix_, dx, tr.residual_);
if (!converged)
std::cout << "### Tracer model: Warning, linear solver did not converge. ###" << std::endl;
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
tr.concentration_[tIdx] -= dx[tIdx];
// Tracer concentrations for restart report
this->tracerConcentration_[tr.idx_[tIdx]] = tr.concentration_[tIdx];
}
// Store _producer_ tracer rate for reporting
const int episodeIdx = simulator_.episodeIndex();
const auto& wells = simulator_.vanguard().schedule().getWells(episodeIdx);
for (const auto& well : wells) {
if (well.getStatus() == Well::Status::SHUT)
continue;
if (!simulator_.problem().wellModel().hasWell(well.name()))
continue;
const auto& wellPtr = simulator_.problem().wellModel().getWell(well.name());
if (!well.isProducer()) //Injection rates already reported during assembly
continue;
Scalar rateWellPos = 0.0;
Scalar rateWellNeg = 0.0;
std::array cartesianCoordinate;
for (auto& connection : well.getConnections()) {
if (connection.state() == Connection::State::SHUT)
continue;
cartesianCoordinate[0] = connection.getI();
cartesianCoordinate[1] = connection.getJ();
cartesianCoordinate[2] = connection.getK();
const size_t cartIdx = simulator_.vanguard().cartesianIndex(cartesianCoordinate);
const int I = this->cartToGlobal_[cartIdx];
Scalar rate = wellPtr->volumetricSurfaceRateForConnection(I, tr.phaseIdx_);
if (rate < 0) {
rateWellNeg += rate;
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
this->wellTracerRate_.at(std::make_pair(well.name(),this->tracerNames_[tr.idx_[tIdx]])) += rate*tr.concentration_[tIdx][I];
}
}
else {
rateWellPos += rate;
}
}
Scalar rateWellTotal = rateWellNeg + rateWellPos;
// TODO: Some inconsistencies here that perhaps should be clarified. The "offical" rate as reported below is
// occasionally significant different from the sum over connections (as calculated above). Only observed
// for small values, neglible for the rate itself, but matters when used to calculate tracer concentrations.
std::size_t well_index = simulator_.problem().wellModel().wellState().index(well.name()).value();
Scalar official_well_rate_total = simulator_.problem().wellModel().wellState().well(well_index).surface_rates[tr.phaseIdx_];
rateWellTotal = official_well_rate_total;
if (rateWellTotal > rateWellNeg) { // Cross flow
const Scalar bucketPrDay = 10.0/(1000.*3600.*24.); // ... keeps (some) trouble away
const Scalar factor = (rateWellTotal < -bucketPrDay) ? rateWellTotal/rateWellNeg : 0.0;
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
this->wellTracerRate_.at(std::make_pair(well.name(),this->tracerNames_[tr.idx_[tIdx]])) *= factor;
}
}
}
}
void prepareTracerBatches()
{
for (size_t tracerIdx=0; tracerIdxtracerPhaseIdx_.size(); ++tracerIdx) {
if (this->tracerPhaseIdx_[tracerIdx] == FluidSystem::waterPhaseIdx) {
if (! FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)){
throw std::runtime_error("Water tracer specified for non-water fluid system:" + this->tracerNames_[tracerIdx]);
}
wat_.addTracer(tracerIdx, this->tracerConcentration_[tracerIdx]);
}
else if (this->tracerPhaseIdx_[tracerIdx] == FluidSystem::oilPhaseIdx) {
if (! FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
throw std::runtime_error("Oil tracer specified for non-oil fluid system:" + this->tracerNames_[tracerIdx]);
}
if (FluidSystem::enableVaporizedOil()) {
throw std::runtime_error("Oil tracer in combination with kw VAPOIL is not supported: " + this->tracerNames_[tracerIdx]);
}
oil_.addTracer(tracerIdx, this->tracerConcentration_[tracerIdx]);
}
else if (this->tracerPhaseIdx_[tracerIdx] == FluidSystem::gasPhaseIdx) {
if (! FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
throw std::runtime_error("Gas tracer specified for non-gas fluid system:" + this->tracerNames_[tracerIdx]);
}
if (FluidSystem::enableDissolvedGas()) {
throw std::runtime_error("Gas tracer in combination with kw DISGAS is not supported: " + this->tracerNames_[tracerIdx]);
}
gas_.addTracer(tracerIdx, this->tracerConcentration_[tracerIdx]);
}
}
}
Simulator& simulator_;
// This struct collects tracers of the same type (i.e, transported in same phase).
// The idea beeing that, under the assumption of linearity, tracers of same type can
// be solved in concert, having a common system matrix but separate right-hand-sides.
// Since oil or gas tracers appears in dual compositions when VAPOIL respectively DISGAS
// is active, the template argument is intended to support future extension to these
// scenarios by supplying an extended vector type.
template
struct TracerBatch {
std::vector idx_;
const int phaseIdx_;
std::vector concentrationInitial_;
std::vector concentration_;
std::vector storageOfTimeIndex1_;
std::vector residual_;
TracerBatch(int phaseIdx) : phaseIdx_(phaseIdx) {}
int numTracer() const {return idx_.size(); }
void addTracer(const int idx, const TV & concentration)
{
int numGridDof = concentration.size();
idx_.emplace_back(idx);
concentrationInitial_.emplace_back(concentration);
concentration_.emplace_back(concentration);
storageOfTimeIndex1_.emplace_back(numGridDof);
residual_.emplace_back(numGridDof);
}
};
TracerBatch wat_;
TracerBatch oil_;
TracerBatch gas_;
};
} // namespace Opm
#endif