// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::AluCartesianIndexMapper
*/
#ifndef EWOMS_ALU_CARTESIAN_INDEX_MAPPER_HH
#define EWOMS_ALU_CARTESIAN_INDEX_MAPPER_HH
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
/*!
* \brief Interface class to access the logical Cartesian grid as used in industry
* standard simulator decks.
*/
template
class AluCartesianIndexMapper
{
public:
// data handle for communicating global ids during load balance and communication
template
class GlobalIndexDataHandle : public Dune::CommDataHandleIF, int>
{
// global id
class GlobalCellIndex
{
public:
GlobalCellIndex()
: idx_(-1)
{}
GlobalCellIndex& operator=(const int index)
{
idx_ = index;
return *this;
}
int index() const
{ return idx_; }
private:
int idx_;
};
typedef typename Dune::PersistentContainer GlobalIndexContainer;
public:
// constructor copying cartesian index to persistent container
GlobalIndexDataHandle(const GridView& gridView,
std::vector& cartesianIndex)
: gridView_(gridView)
, globalIndex_(gridView.grid(), 0)
, cartesianIndex_(cartesianIndex)
{
globalIndex_.resize();
initialize();
}
// constructor copying cartesian index to persistent container
GlobalIndexDataHandle(const GlobalIndexDataHandle& other) = delete ;
// destrcutor writing load balanced cartesian index back to vector
~GlobalIndexDataHandle()
{ finalize(); }
bool contains(int dim, int codim) const
{ return codim == 0; }
bool fixedsize(int dim, int codim) const
{ return true; }
//! \brief loop over all internal data handlers and call gather for
//! given entity
template
void gather(MessageBufferImp& buff, const EntityType& element) const
{
int globalIdx = globalIndex_[element].index();
buff.write(globalIdx);
}
//! \brief loop over all internal data handlers and call scatter for
//! given entity
template
void scatter(MessageBufferImp& buff, const EntityType& element, size_t n)
{
int globalIdx = -1;
buff.read(globalIdx);
if (globalIdx >= 0)
{
globalIndex_.resize();
globalIndex_[element] = globalIdx;
}
}
//! \brief loop over all internal data handlers and return sum of data
//! size of given entity
template
size_t size(const EntityType& en) const
{ return 1; }
protected:
// initialize persistent container from given vector
void initialize()
{
auto idx = cartesianIndex_.begin();
auto it = gridView_.template begin<0>();
const auto& endIt = gridView_.template end<0>();
for (; it != endIt; ++it, ++idx)
globalIndex_[*it] = *idx;
}
// update vector from given persistent container
void finalize()
{
std::vector newIndex ;
newIndex.reserve(gridView_.indexSet().size(0));
auto it = gridView_.template begin<0>();
const auto& endIt = gridView_.template end<0>();
for (; it != endIt; ++it)
newIndex.push_back(globalIndex_[*it].index()) ;
cartesianIndex_.swap(newIndex);
}
GridView gridView_;
GlobalIndexContainer globalIndex_;
std::vector& cartesianIndex_;
};
public:
/** \brief dimension of the grid */
static const int dimension = Grid::dimension ;
/** \brief constructor taking grid */
AluCartesianIndexMapper(const Grid& grid,
const std::array& cartDims,
const std::vector& cartesianIndex)
: grid_(grid)
, cartesianDimensions_(cartDims)
, cartesianIndex_(cartesianIndex)
, cartesianSize_(computeCartesianSize())
{}
/** \brief return Cartesian dimensions, i.e. number of cells in each direction */
const std::array& cartesianDimensions() const
{ return cartesianDimensions_; }
/** \brief return total number of cells in the logical Cartesian grid */
int cartesianSize() const
{ return cartesianSize_; }
/** \brief return number of cells in the active grid */
int compressedSize() const
{ return cartesianIndex_.size(); }
/** \brief return index of the cells in the logical Cartesian grid */
int cartesianIndex(const int compressedElementIndex) const
{
assert(compressedElementIndex < compressedSize());
return cartesianIndex_[compressedElementIndex];
}
/** \brief return index of the cells in the logical Cartesian grid */
int cartesianIndex(const std::array& coords) const
{
int cartIndex = coords[0];
int factor = cartesianDimensions()[0];
for (int i=1; i < dimension; ++i) {
cartIndex += coords[i] * factor;
factor *= cartesianDimensions()[i];
}
return cartIndex;
}
/** \brief return Cartesian coordinate, i.e. IJK, for a given cell */
void cartesianCoordinate(const int compressedElementIndex, std::array& coords) const
{
int gc = cartesianIndex(compressedElementIndex);
if (dimension == 3) {
coords[0] = gc % cartesianDimensions()[0];
gc /= cartesianDimensions()[0];
coords[1] = gc % cartesianDimensions()[1];
coords[2] = gc / cartesianDimensions()[1];
}
else if (dimension == 2) {
coords[0] = gc % cartesianDimensions()[0];
coords[1] = gc / cartesianDimensions()[0];
}
else if (dimension == 1)
coords[0] = gc ;
else
throw std::invalid_argument("cartesianCoordinate not implemented for dimension " + std::to_string(dimension));
}
template
std::unique_ptr > dataHandle(const GridView& gridView)
{
typedef GlobalIndexDataHandle DataHandle ;
assert(&grid_ == &gridView.grid());
return std::unique_ptr(new DataHandle(gridView, cartesianIndex_));
}
protected:
int computeCartesianSize() const
{
int size = cartesianDimensions()[0];
for (int d=1; d cartesianDimensions_;
std::vector cartesianIndex_;
const int cartesianSize_ ;
};
} // end namespace Opm
#endif