// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::NcpLocalResidual */ #ifndef EWOMS_NCP_LOCAL_RESIDUAL_HH #define EWOMS_NCP_LOCAL_RESIDUAL_HH #include "ncpproperties.hh" #include #include #include namespace Opm { /*! * \ingroup NcpModel * * \brief Details needed to calculate the local residual in the * compositional multi-phase NCP-model . */ template class NcpLocalResidual : public GetPropType { using ParentType = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using EqVector = GetPropType; using RateVector = GetPropType; using IntensiveQuantities = GetPropType; using ElementContext = GetPropType; using Indices = GetPropType; enum { numEq = getPropValue() }; enum { numPhases = getPropValue() }; enum { numComponents = getPropValue() }; enum { ncp0EqIdx = Indices::ncp0EqIdx }; enum { conti0EqIdx = Indices::conti0EqIdx }; enum { enableDiffusion = getPropValue() }; using DiffusionModule = Opm::DiffusionModule; enum { enableEnergy = getPropValue() }; using EnergyModule = Opm::EnergyModule; using EvalEqVector = Dune::FieldVector; using ElemEvalEqVector = Dune::BlockVector; using Toolbox = Opm::MathToolbox; public: /*! * \copydoc ImmiscibleLocalResidual::addPhaseStorage */ template void addPhaseStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx, unsigned phaseIdx) const { const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx); const auto& fluidState = intQuants.fluidState(); // compute storage term of all components within all phases for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { unsigned eqIdx = conti0EqIdx + compIdx; storage[eqIdx] += Toolbox::template decay(fluidState.molarity(phaseIdx, compIdx)) * Toolbox::template decay(fluidState.saturation(phaseIdx)) * Toolbox::template decay(intQuants.porosity()); } EnergyModule::addPhaseStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx), phaseIdx); } /*! * \copydoc ImmiscibleLocalResidual::computeStorage */ template void computeStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { storage = 0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx); EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx)); } /*! * \copydoc ImmiscibleLocalResidual::computeFlux */ void computeFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { flux = 0.0; addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx); Opm::Valgrind::CheckDefined(flux); addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); Opm::Valgrind::CheckDefined(flux); } /*! * \copydoc ImmiscibleLocalResidual::addAdvectiveFlux */ void addAdvectiveFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); unsigned focusDofIdx = elemCtx.focusDofIndex(); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { // data attached to upstream and the downstream DOFs // of the current phase unsigned upIdx = static_cast(extQuants.upstreamIndex(phaseIdx)); const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx); // this is a bit hacky because it is specific to the element-centered // finite volume scheme. (N.B. that if finite differences are used to // linearize the system of equations, it does not matter.) if (upIdx == focusDofIdx) { Evaluation tmp = up.fluidState().molarDensity(phaseIdx) * extQuants.volumeFlux(phaseIdx); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { flux[conti0EqIdx + compIdx] += tmp*up.fluidState().moleFraction(phaseIdx, compIdx); } } else { Evaluation tmp = Toolbox::value(up.fluidState().molarDensity(phaseIdx)) * extQuants.volumeFlux(phaseIdx); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { flux[conti0EqIdx + compIdx] += tmp*Toolbox::value(up.fluidState().moleFraction(phaseIdx, compIdx)); } } } EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \copydoc ImmiscibleLocalResidual::addDiffusiveFlux */ void addDiffusiveFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \copydoc FvBaseLocalResidual::computeSource * * By default, this method only asks the problem to specify a * source term. */ void computeSource(RateVector& source, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { Opm::Valgrind::SetUndefined(source); elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx); Opm::Valgrind::CheckDefined(source); // evaluate the NCPs (i.e., the "phase presence" equations) for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { source[ncp0EqIdx + phaseIdx] = phaseNcp(elemCtx, dofIdx, timeIdx, phaseIdx); } } /*! * \brief Returns the value of the NCP-function for a phase. */ template LhsEval phaseNcp(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx, unsigned phaseIdx) const { const auto& fluidState = elemCtx.intensiveQuantities(dofIdx, timeIdx).fluidState(); using FluidState = typename std::remove_const::type>::type; using LhsToolbox = Opm::MathToolbox; const LhsEval& a = phaseNotPresentIneq_(fluidState, phaseIdx); const LhsEval& b = phasePresentIneq_(fluidState, phaseIdx); return LhsToolbox::min(a, b); } private: /*! * \brief Returns the value of the inequality where a phase is * present. */ template LhsEval phasePresentIneq_(const FluidState& fluidState, unsigned phaseIdx) const { using FsToolbox = Opm::MathToolbox; return FsToolbox::template decay(fluidState.saturation(phaseIdx)); } /*! * \brief Returns the value of the inequality where a phase is not * present. */ template LhsEval phaseNotPresentIneq_(const FluidState& fluidState, unsigned phaseIdx) const { using FsToolbox = Opm::MathToolbox; // difference of sum of mole fractions in the phase from 100% LhsEval a = 1.0; for (unsigned i = 0; i < numComponents; ++i) a -= FsToolbox::template decay(fluidState.moleFraction(phaseIdx, i)); return a; } }; } // namespace Opm #endif