// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * \copydoc Opm::InfiltrationProblem */ #ifndef EWOMS_INFILTRATION_PROBLEM_HH #define EWOMS_INFILTRATION_PROBLEM_HH #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template class InfiltrationProblem; } namespace Opm::Properties { namespace TTag { struct InfiltrationBaseProblem {}; } // Set the grid type template struct Grid { using type = Dune::YaspGrid<2>; }; // Set the problem property template struct Problem { using type = Opm::InfiltrationProblem; }; // Set the fluid system template struct FluidSystem { using type = Opm::H2OAirMesityleneFluidSystem>; }; // Enable gravity? template struct EnableGravity { static constexpr bool value = true; }; // Write newton convergence? template struct NewtonWriteConvergence { static constexpr bool value = false; }; // -1 backward differences, 0: central differences, +1: forward differences template struct NumericDifferenceMethod { static constexpr int value = 1; }; // Set the material Law template struct MaterialLaw { private: using Scalar = GetPropType; using FluidSystem = GetPropType; using Traits= Opm::ThreePhaseMaterialTraits< Scalar, /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx, /*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx, /*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>; public: using type = Opm::ThreePhaseParkerVanGenuchten; }; // The default for the end time of the simulation template struct EndTime { using type = GetPropType; static constexpr type value = 6e3; }; // The default for the initial time step size of the simulation template struct InitialTimeStepSize { using type = GetPropType; static constexpr type value = 60; }; // The default DGF file to load template struct GridFile { static constexpr auto value = "./data/infiltration_50x3.dgf"; }; } // namespace Opm::Properties namespace Opm { /*! * \ingroup TestProblems * \brief Isothermal NAPL infiltration problem where LNAPL * contaminates the unsaturated and the saturated groundwater * zone. * * The 2D domain of this test problem is 500 m long and 10 m deep, * where the lower part represents a slightly inclined groundwater * table, and the upper part is the vadose zone. A LNAPL (Non-Aqueous * Phase Liquid which is lighter than water) infiltrates (modelled * with a Neumann boundary condition) into the vadose zone. Upon * reaching the water table, it spreads (since lighter than water) and * migrates on top of the water table in the direction of the slope. * On its way through the vadose zone, it leaves a trace of residually * trapped immobile NAPL, which can in the following dissolve and * evaporate slowly, and eventually be transported by advection and * diffusion. * * Left and right boundaries are constant hydraulic head boundaries * (Dirichlet), Top and bottom are Neumann boundaries, all no-flow * except for the small infiltration zone in the upper left part. */ template class InfiltrationProblem : public GetPropType { using ParentType = GetPropType; using Scalar = GetPropType; using GridView = GetPropType; using MaterialLaw = GetPropType; using MaterialLawParams = GetPropType; using PrimaryVariables = GetPropType; using EqVector = GetPropType; using RateVector = GetPropType; using BoundaryRateVector = GetPropType; using Simulator = GetPropType; using FluidSystem = GetPropType; using Model = GetPropType; // copy some indices for convenience using Indices = GetPropType; enum { // equation indices conti0EqIdx = Indices::conti0EqIdx, // number of phases/components numPhases = FluidSystem::numPhases, // component indices NAPLIdx = FluidSystem::NAPLIdx, H2OIdx = FluidSystem::H2OIdx, airIdx = FluidSystem::airIdx, // phase indices waterPhaseIdx = FluidSystem::waterPhaseIdx, gasPhaseIdx = FluidSystem::gasPhaseIdx, naplPhaseIdx = FluidSystem::naplPhaseIdx, // Grid and world dimension dim = GridView::dimension, dimWorld = GridView::dimensionworld }; using CoordScalar = typename GridView::ctype; using GlobalPosition = Dune::FieldVector; using DimMatrix = Dune::FieldMatrix; public: /*! * \copydoc Doxygen::defaultProblemConstructor */ InfiltrationProblem(Simulator& simulator) : ParentType(simulator) , eps_(1e-6) { } /*! * \copydoc FvBaseProblem::finishInit */ void finishInit() { ParentType::finishInit(); temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius FluidSystem::init(/*tempMin=*/temperature_ - 1, /*tempMax=*/temperature_ + 1, /*nTemp=*/3, /*pressMin=*/0.8 * 1e5, /*pressMax=*/3 * 1e5, /*nPress=*/200); // intrinsic permeabilities fineK_ = this->toDimMatrix_(1e-11); coarseK_ = this->toDimMatrix_(1e-11); // porosities porosity_ = 0.40; // residual saturations materialParams_.setSwr(0.12); materialParams_.setSwrx(0.12); materialParams_.setSnr(0.07); materialParams_.setSgr(0.03); // parameters for the three-phase van Genuchten law materialParams_.setVgAlpha(0.0005); materialParams_.setVgN(4.); materialParams_.setkrRegardsSnr(false); materialParams_.finalize(); materialParams_.checkDefined(); } /*! * \name Problem parameters */ //! \{ /*! * \copydoc FvBaseProblem::shouldWriteRestartFile * * This problem writes a restart file after every time step. */ bool shouldWriteRestartFile() const { return true; } /*! * \copydoc FvBaseProblem::name */ std::string name() const { std::ostringstream oss; oss << "infiltration_" << Model::name(); return oss.str(); } /*! * \copydoc FvBaseProblem::endTimeStep */ void endTimeStep() { #ifndef NDEBUG this->model().checkConservativeness(); // Calculate storage terms EqVector storage; this->model().globalStorage(storage); // Write mass balance information for rank 0 if (this->gridView().comm().rank() == 0) { std::cout << "Storage: " << storage << std::endl << std::flush; } #endif // NDEBUG } /*! * \copydoc FvBaseMultiPhaseProblem::temperature */ template Scalar temperature(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const { return temperature_; } /*! * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability */ template const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx, unsigned timeIdx) const { const GlobalPosition& pos = context.pos(spaceIdx, timeIdx); if (isFineMaterial_(pos)) return fineK_; return coarseK_; } /*! * \copydoc FvBaseMultiPhaseProblem::porosity */ template Scalar porosity(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const { return porosity_; } /*! * \copydoc FvBaseMultiPhaseProblem::materialLawParams */ template const MaterialLawParams& materialLawParams(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const { return materialParams_; } //! \} /*! * \name Boundary conditions */ //! \{ /*! * \copydoc FvBaseProblem::boundary */ template void boundary(BoundaryRateVector& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { const auto& pos = context.pos(spaceIdx, timeIdx); if (onLeftBoundary_(pos) || onRightBoundary_(pos)) { Opm::CompositionalFluidState fs; initialFluidState_(fs, context, spaceIdx, timeIdx); values.setFreeFlow(context, spaceIdx, timeIdx, fs); } else if (onInlet_(pos)) { RateVector molarRate(0.0); molarRate[conti0EqIdx + NAPLIdx] = -0.001; values.setMolarRate(molarRate); Opm::Valgrind::CheckDefined(values); } else values.setNoFlow(); } //! \} /*! * \name Volumetric terms */ //! \{ /*! * \copydoc FvBaseProblem::initial */ template void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { Opm::CompositionalFluidState fs; initialFluidState_(fs, context, spaceIdx, timeIdx); const auto& matParams = materialLawParams(context, spaceIdx, timeIdx); values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true); Opm::Valgrind::CheckDefined(values); } /*! * \copydoc FvBaseProblem::source * * For this problem, the source term of all components is 0 * everywhere. */ template void source(RateVector& rate, const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const { rate = Scalar(0.0); } //! \} private: bool onLeftBoundary_(const GlobalPosition& pos) const { return pos[0] < eps_; } bool onRightBoundary_(const GlobalPosition& pos) const { return pos[0] > this->boundingBoxMax()[0] - eps_; } bool onLowerBoundary_(const GlobalPosition& pos) const { return pos[1] < eps_; } bool onUpperBoundary_(const GlobalPosition& pos) const { return pos[1] > this->boundingBoxMax()[1] - eps_; } bool onInlet_(const GlobalPosition& pos) const { return onUpperBoundary_(pos) && 50 < pos[0] && pos[0] < 75; } template void initialFluidState_(FluidState& fs, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { const GlobalPosition pos = context.pos(spaceIdx, timeIdx); Scalar y = pos[1]; Scalar x = pos[0]; Scalar densityW = 1000.0; Scalar pc = 9.81 * densityW * (y - (5 - 5e-4 * x)); if (pc < 0.0) pc = 0.0; // set pressures const auto& matParams = materialLawParams(context, spaceIdx, timeIdx); Scalar Sw = matParams.Swr(); Scalar Swr = matParams.Swr(); Scalar Sgr = matParams.Sgr(); if (Sw < Swr) Sw = Swr; if (Sw > 1 - Sgr) Sw = 1 - Sgr; Scalar Sg = 1 - Sw; Opm::Valgrind::CheckDefined(Sw); Opm::Valgrind::CheckDefined(Sg); fs.setSaturation(waterPhaseIdx, Sw); fs.setSaturation(gasPhaseIdx, Sg); fs.setSaturation(naplPhaseIdx, 0); // set temperature of all phases fs.setTemperature(temperature_); // compute pressures Scalar pcAll[numPhases]; Scalar pg = 1e5; if (onLeftBoundary_(pos)) pg += 10e3; MaterialLaw::capillaryPressures(pcAll, matParams, fs); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) fs.setPressure(phaseIdx, pg + (pcAll[phaseIdx] - pcAll[gasPhaseIdx])); // set composition of gas phase fs.setMoleFraction(gasPhaseIdx, H2OIdx, 1e-6); fs.setMoleFraction(gasPhaseIdx, airIdx, 1 - fs.moleFraction(gasPhaseIdx, H2OIdx)); fs.setMoleFraction(gasPhaseIdx, NAPLIdx, 0); using CFRP = Opm::ComputeFromReferencePhase; typename FluidSystem::template ParameterCache paramCache; CFRP::solve(fs, paramCache, gasPhaseIdx, /*setViscosity=*/true, /*setEnthalpy=*/false); fs.setMoleFraction(waterPhaseIdx, H2OIdx, 1 - fs.moleFraction(waterPhaseIdx, H2OIdx)); } bool isFineMaterial_(const GlobalPosition& pos) const { return 70. <= pos[0] && pos[0] <= 85. && 7.0 <= pos[1] && pos[1] <= 7.50; } DimMatrix fineK_; DimMatrix coarseK_; Scalar porosity_; MaterialLawParams materialParams_; Scalar temperature_; Scalar eps_; }; } // namespace Opm #endif