/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED #define OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED #include #include #include #include #include namespace Opm { struct BlackoilMultiSegmentSolutionState : public DefaultBlackoilSolutionState { explicit BlackoilMultiSegmentSolutionState(const int np) : DefaultBlackoilSolutionState(np) , segp ( ADB::null()) , segqs ( ADB::null()) { } ADB segp; // the segment pressures ADB segqs; // the segment phase rate in surface volume }; /// A model implementation for three-phase black oil with support /// for multi-segment wells. /// /// It uses automatic differentiation via the class AutoDiffBlock /// to simplify assembly of the jacobian matrix. /// \tparam Grid UnstructuredGrid or CpGrid. /// \tparam Implementation Provides concrete state types. template class BlackoilMultiSegmentModel : public BlackoilModelBase> { public: typedef BlackoilModelBase > Base; // base class typedef typename Base::ReservoirState ReservoirState; typedef typename Base::WellState WellState; typedef BlackoilMultiSegmentSolutionState SolutionState; friend Base; // --------- Public methods --------- /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] fluid fluid properties /// \param[in] geo rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] wells well structure /// \param[in] vfp_properties Vertical flow performance tables /// \param[in] linsolver linear solver /// \param[in] eclState eclipse state /// \param[in] has_disgas turn on dissolved gas /// \param[in] has_vapoil turn on vaporized oil feature /// \param[in] terminal_output request output to cout/cerr /// \param[in] wells_multisegment a vector of multisegment wells BlackoilMultiSegmentModel(const typename Base::ModelParameters& param, const Grid& grid , const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const Wells* wells, const NewtonIterationBlackoilInterface& linsolver, Opm::EclipseStateConstPtr eclState, const bool has_disgas, const bool has_vapoil, const bool terminal_output, const std::vector& wells_multisegment); /// Called once before each time step. /// \param[in] dt time step size /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void prepareStep(const double dt, ReservoirState& reservoir_state, WellState& well_state); /// Assemble the residual and Jacobian of the nonlinear system. /// \param[in] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables /// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep void assemble(const ReservoirState& reservoir_state, WellState& well_state, const bool initial_assembly); using Base::numPhases; using Base::numMaterials; using Base::materialName; protected: // --------- Data members --------- // For non-segmented wells, it should be the density calculated with AVG or SEG way. // while usually SEG way by default. using Base::pvdt_; using Base::geo_; using Base::active_; using Base::rq_; using Base::fluid_; using Base::terminal_output_; using Base::grid_; using Base::canph_; using Base::residual_; using Base::isSg_; using Base::isRs_; using Base::isRv_; using Base::has_disgas_; using Base::has_vapoil_; using Base::primalVariable_; using Base::cells_; using Base::param_; using Base::linsolver_; // Pressure correction due to the different depth of the perforation // and the cell center of the grid block // For the non-segmented wells, since the perforation are forced to be // at the center of the grid cell, it should be ZERO. // It only applies to the mutli-segmented wells. V well_perforation_cell_pressure_diffs_; // Pressure correction due to the depth differennce between segment depth and perforation depth. ADB well_segment_perforation_pressure_diffs_; // The depth difference between segment nodes and perforations V well_segment_perforation_depth_diffs_; // the average of the fluid densities in the grid block // which is used to calculate the hydrostatic head correction due to the depth difference of the perforation // and the cell center of the grid block V well_perforation_cell_densities_; // the density of the fluid mixture in the segments // which is calculated in an implicit way ADB well_segment_densities_; // the hydrostatic pressure drop between segment nodes // calculated with the above density of fluid mixtures // for the top segment, they should always be zero for the moment. ADB well_segment_pressures_delta_; // the surface volume of components in the segments // the initial value at the beginning of the time step std::vector segment_comp_surf_volume_initial_; // the value within the current iteration. std::vector segment_comp_surf_volume_current_; // the mass flow rate in the segments ADB segment_mass_flow_rates_; // the viscosity of the fluid mixture in the segments // TODO: it is only used to calculate the Reynolds number as we know // maybe it is not better just to store the Reynolds number? ADB segment_viscosities_; const std::vector wells_multisegment_; std::vector top_well_segments_; // segment volume by dt (time step) // to handle the volume effects of the segment V segvdt_; // Well operations and data needed. struct MultiSegmentWellOps { explicit MultiSegmentWellOps(const std::vector& wells_ms); Eigen::SparseMatrix w2p; // well -> perf (scatter) Eigen::SparseMatrix p2w; // perf -> well (gather) Eigen::SparseMatrix w2s; // well -> segment (scatter) Eigen::SparseMatrix s2w; // segment -> well (gather) Eigen::SparseMatrix s2p; // segment -> perf (scatter) Eigen::SparseMatrix p2s; // perf -> segment (gather) Eigen::SparseMatrix s2s_inlets; // segment -> its inlet segments Eigen::SparseMatrix s2s_outlet; // segment -> its outlet segment Eigen::SparseMatrix topseg2w; // top segment -> well AutoDiffMatrix eliminate_topseg; // change the top segment related to be zero std::vector well_cells; // the set of perforated cells V conn_trans_factors; // connection transmissibility factors bool has_multisegment_wells; // flag indicating whether there is any muli-segment well }; MultiSegmentWellOps wops_ms_; using Base::stdWells; using Base::wells; using Base::wellsActive; using Base::updatePrimalVariableFromState; using Base::phaseCondition; using Base::fluidRvSat; using Base::fluidRsSat; using Base::fluidDensity; using Base::updatePhaseCondFromPrimalVariable; using Base::computeGasPressure; using Base::dpMaxRel; using Base::dsMax; using Base::drMaxRel; using Base::convergenceReduction; using Base::maxResidualAllowed; using Base::variableState; using Base::asImpl; const std::vector& wellsMultiSegment() const { return wells_multisegment_; } void updateWellControls(WellState& xw) const; void updateWellState(const V& dwells, WellState& well_state); void variableWellStateInitials(const WellState& xw, std::vector& vars0) const; void computeWellConnectionPressures(const SolutionState& state, const WellState& xw); bool solveWellEq(const std::vector& mob_perfcells, const std::vector& b_perfcells, SolutionState& state, WellState& well_state); void computeWellFlux(const SolutionState& state, const std::vector& mob_perfcells, const std::vector& b_perfcells, V& aliveWells, std::vector& cq_s) const; void updatePerfPhaseRatesAndPressures(const std::vector& cq_s, const SolutionState& state, WellState& xw) const; void addWellFluxEq(const std::vector& cq_s, const SolutionState& state); void addWellControlEq(const SolutionState& state, const WellState& xw, const V& aliveWells); int numWellVars() const; void makeConstantState(SolutionState& state) const; void variableStateExtractWellsVars(const std::vector& indices, std::vector& vars, SolutionState& state) const; // Calculate the density of the mixture in the segments // And the surface volume of the components in the segments by dt void computeSegmentFluidProperties(const SolutionState& state); void computeSegmentPressuresDelta(const SolutionState& state); }; /// Providing types by template specialisation of ModelTraits for BlackoilMultiSegmentModel. template struct ModelTraits< BlackoilMultiSegmentModel > { typedef BlackoilState ReservoirState; typedef WellStateMultiSegment WellState; typedef BlackoilModelParameters ModelParameters; typedef BlackoilMultiSegmentSolutionState SolutionState; }; } // namespace Opm #include "BlackoilMultiSegmentModel_impl.hpp" #endif // OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED