// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \brief This file contains the flux module which is used for ECL problems * * This approach to fluxes is very specific to two-point flux approximation and applies * what the Eclipse Technical Description calls the "NEWTRAN" transmissibility approach. */ #ifndef EWOMS_ECL_FLUX_MODULE_HH #define EWOMS_ECL_FLUX_MODULE_HH #include #include #include #include #include #include #include BEGIN_PROPERTIES NEW_PROP_TAG(MaterialLaw); END_PROPERTIES namespace Opm { template class EclTransIntensiveQuantities; template class EclTransExtensiveQuantities; template class EclTransBaseProblem; /*! * \ingroup EclBlackOilSimulator * \brief Specifies a flux module which uses ECL transmissibilities. */ template struct EclTransFluxModule { typedef EclTransIntensiveQuantities FluxIntensiveQuantities; typedef EclTransExtensiveQuantities FluxExtensiveQuantities; typedef EclTransBaseProblem FluxBaseProblem; /*! * \brief Register all run-time parameters for the flux module. */ static void registerParameters() { } }; /*! * \ingroup EclBlackOilSimulator * \brief Provides the defaults for the parameters required by the * transmissibility based volume flux calculation. */ template class EclTransBaseProblem { }; /*! * \ingroup EclBlackOilSimulator * \brief Provides the intensive quantities for the ECL flux module */ template class EclTransIntensiveQuantities { typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; protected: void update_(const ElementContext& elemCtx OPM_UNUSED, unsigned dofIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED) { } }; /*! * \ingroup EclBlackOilSimulator * \brief Provides the ECL flux module */ template class EclTransExtensiveQuantities { typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; enum { dimWorld = GridView::dimensionworld }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; enum { numPhases = FluidSystem::numPhases }; enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) }; enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) }; enum { enableExperiments = GET_PROP_VALUE(TypeTag, EnableExperiments) }; typedef Opm::MathToolbox Toolbox; typedef Dune::FieldVector DimVector; typedef Dune::FieldVector EvalDimVector; typedef Dune::FieldMatrix DimMatrix; public: /*! * \brief Return the intrinsic permeability tensor at a face [m^2] */ const DimMatrix& intrinsicPermeability() const { throw std::invalid_argument("The ECL transmissibility module does not provide an explicit intrinsic permeability"); } /*! * \brief Return the pressure potential gradient of a fluid phase at the * face's integration point [Pa/m] * * \param phaseIdx The index of the fluid phase */ const EvalDimVector& potentialGrad(unsigned phaseIdx OPM_UNUSED) const { throw std::invalid_argument("The ECL transmissibility module does not provide explicit potential gradients"); } /*! * \brief Return the gravity corrected pressure difference between the interior and * the exterior of a face. * * \param phaseIdx The index of the fluid phase */ const Evaluation& pressureDifference(unsigned phaseIdx) const { return pressureDifference_[phaseIdx]; } /*! * \brief Return the filter velocity of a fluid phase at the face's integration point * [m/s] * * \param phaseIdx The index of the fluid phase */ const EvalDimVector& filterVelocity(unsigned phaseIdx OPM_UNUSED) const { throw std::invalid_argument("The ECL transmissibility module does not provide explicit filter velocities"); } /*! * \brief Return the volume flux of a fluid phase at the face's integration point * \f$[m^3/s / m^2]\f$ * * This is the fluid volume of a phase per second and per square meter of face * area. * * \param phaseIdx The index of the fluid phase */ const Evaluation& volumeFlux(unsigned phaseIdx) const { return volumeFlux_[phaseIdx]; } protected: /*! * \brief Returns the local index of the degree of freedom in which is * in upstream direction. * * i.e., the DOF which exhibits a higher effective pressure for * the given phase. */ unsigned upstreamIndex_(unsigned phaseIdx) const { assert(0 <= phaseIdx && phaseIdx < numPhases); return upIdx_[phaseIdx]; } /*! * \brief Returns the local index of the degree of freedom in which is * in downstream direction. * * i.e., the DOF which exhibits a lower effective pressure for the * given phase. */ unsigned downstreamIndex_(unsigned phaseIdx) const { assert(0 <= phaseIdx && phaseIdx < numPhases); return dnIdx_[phaseIdx]; } void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); } void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); } /*! * \brief Update the required gradients for interior faces */ void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { Opm::Valgrind::SetUndefined(*this); const auto& problem = elemCtx.problem(); const auto& stencil = elemCtx.stencil(timeIdx); const auto& scvf = stencil.interiorFace(scvfIdx); interiorDofIdx_ = scvf.interiorIndex(); exteriorDofIdx_ = scvf.exteriorIndex(); assert(interiorDofIdx_ != exteriorDofIdx_); unsigned I = stencil.globalSpaceIndex(interiorDofIdx_); unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_); Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx_, exteriorDofIdx_); Scalar faceArea = scvf.area(); Scalar thpres = problem.thresholdPressure(I, J); // estimate the gravity correction: for performance reasons we use a simplified // approach for this flux module that assumes that gravity is constant and always // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) Scalar g = elemCtx.problem().gravity()[dimWorld - 1]; const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx); const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx); // this is quite hacky because the dune grid interface does not provide a // cellCenterDepth() method (so we ask the problem to provide it). The "good" // solution would be to take the Z coordinate of the element centroids, but since // ECL seems to like to be inconsistent on that front, it needs to be done like // here... Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx_, timeIdx); Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx_, timeIdx); // the distances from the DOF's depths. (i.e., the additional depth of the // exterior DOF) Scalar distZ = zIn - zEx; for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; // check shortcut: if the mobility of the phase is zero in the interior as // well as the exterior DOF, we can skip looking at the phase. if (intQuantsIn.mobility(phaseIdx) <= 0.0 && intQuantsEx.mobility(phaseIdx) <= 0.0) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; pressureDifference_[phaseIdx] = 0.0; volumeFlux_[phaseIdx] = 0.0; continue; } // do the gravity correction: compute the hydrostatic pressure for the // external at the depth of the internal one const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx); Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx)); Evaluation rhoAvg = (rhoIn + rhoEx)/2; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx); Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx)); pressureExterior += rhoAvg*(distZ*g); pressureDifference_[phaseIdx] = pressureExterior - pressureInterior; // decide the upstream index for the phase. for this we make sure that the // degree of freedom which is regarded upstream if both pressures are equal // is always the same: if the pressure is equal, the DOF with the lower // global index is regarded to be the upstream one. if (pressureDifference_[phaseIdx] > 0.0) { upIdx_[phaseIdx] = exteriorDofIdx_; dnIdx_[phaseIdx] = interiorDofIdx_; } else if (pressureDifference_[phaseIdx] < 0.0) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; } else { // if the pressure difference is zero, we chose the DOF which has the // larger volume associated to it as upstream DOF Scalar Vin = elemCtx.dofVolume(interiorDofIdx_, /*timeIdx=*/0); Scalar Vex = elemCtx.dofVolume(exteriorDofIdx_, /*timeIdx=*/0); if (Vin > Vex) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; } else if (Vin < Vex) { upIdx_[phaseIdx] = exteriorDofIdx_; dnIdx_[phaseIdx] = interiorDofIdx_; } else { assert(Vin == Vex); // if the volumes are also equal, we pick the DOF which exhibits the // smaller global index if (I < J) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; } else { upIdx_[phaseIdx] = exteriorDofIdx_; dnIdx_[phaseIdx] = interiorDofIdx_; } } } // apply the threshold pressure for the intersection. note that the concept // of threshold pressure is a quite big hack that only makes sense for ECL // datasets. (and even there, its physical justification is quite // questionable IMO.) if (std::abs(Toolbox::value(pressureDifference_[phaseIdx])) > thpres) { if (pressureDifference_[phaseIdx] < 0.0) pressureDifference_[phaseIdx] += thpres; else pressureDifference_[phaseIdx] -= thpres; } else { pressureDifference_[phaseIdx] = 0.0; volumeFlux_[phaseIdx] = 0.0; continue; } // this is slightly hacky because in the automatic differentiation case, it // only works for the element centered finite volume method. for ebos this // does not matter, though. unsigned upstreamIdx = upstreamIndex_(phaseIdx); const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx); // TODO: should the rock compaction transmissibility multiplier be upstreamed // or averaged? all fluids should see the same compaction?! const Evaluation& transMult = problem.template rockCompTransMultiplier(up, stencil.globalSpaceIndex(upstreamIdx)); if (upstreamIdx == interiorDofIdx_) volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*transMult*(-trans/faceArea); else volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea)); } } /*! * \brief Update the required gradients for boundary faces */ template void calculateBoundaryGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx, const FluidState& exFluidState) { const auto& problem = elemCtx.problem(); bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions(); if (!enableBoundaryMassFlux) return; const auto& stencil = elemCtx.stencil(timeIdx); const auto& scvf = stencil.boundaryFace(scvfIdx); interiorDofIdx_ = scvf.interiorIndex(); Scalar trans = problem.transmissibilityBoundary(elemCtx, scvfIdx); Scalar faceArea = scvf.area(); // estimate the gravity correction: for performance reasons we use a simplified // approach for this flux module that assumes that gravity is constant and always // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) Scalar g = elemCtx.problem().gravity()[dimWorld - 1]; const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx); // this is quite hacky because the dune grid interface does not provide a // cellCenterDepth() method (so we ask the problem to provide it). The "good" // solution would be to take the Z coordinate of the element centroids, but since // ECL seems to like to be inconsistent on that front, it needs to be done like // here... Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx_, timeIdx); Scalar zEx = scvf.integrationPos()[dimWorld - 1]; // the distances from the DOF's depths. (i.e., the additional depth of the // exterior DOF) Scalar distZ = zIn - zEx; for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; // do the gravity correction: compute the hydrostatic pressure for the // integration position const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx); const auto& rhoEx = exFluidState.density(phaseIdx); Evaluation rhoAvg = (rhoIn + rhoEx)/2; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx); Evaluation pressureExterior = exFluidState.pressure(phaseIdx); pressureExterior += rhoAvg*(distZ*g); pressureDifference_[phaseIdx] = pressureExterior - pressureInterior; // decide the upstream index for the phase. for this we make sure that the // degree of freedom which is regarded upstream if both pressures are equal // is always the same: if the pressure is equal, the DOF with the lower // global index is regarded to be the upstream one. if (pressureDifference_[phaseIdx] > 0.0) { upIdx_[phaseIdx] = -1; dnIdx_[phaseIdx] = interiorDofIdx_; } else { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = -1; } // this is slightly hacky because in the automatic differentiation case, it // only works for the element centered finite volume method. for ebos this // does not matter, though. unsigned upstreamIdx = upstreamIndex_(phaseIdx); const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx); Evaluation transModified = trans; if (enableExperiments) { // deal with water induced rock compaction transModified *= problem.template rockCompTransMultiplier(up, stencil.globalSpaceIndex(upstreamIdx)); } if (upstreamIdx == interiorDofIdx_) { volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea); if (enableSolvent && phaseIdx == gasPhaseIdx) asImp_().setSolventVolumeFlux( pressureDifference_[phaseIdx]*up.solventMobility()*(-transModified/faceArea)); } else { // compute the phase mobility using the material law parameters of the // interior element. TODO: this could probably be done more efficiently const auto& matParams = elemCtx.problem().materialLawParams(elemCtx, interiorDofIdx_, /*timeIdx=*/0); typename FluidState::Scalar kr[numPhases]; MaterialLaw::relativePermeabilities(kr, matParams, exFluidState); const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx); volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*mob*(-transModified/faceArea); // Solvent inflow is not yet supported if (enableSolvent && phaseIdx == gasPhaseIdx) asImp_().setSolventVolumeFlux(0.0); } } } /*! * \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context */ void calculateFluxes_(const ElementContext& elemCtx OPM_UNUSED, unsigned scvfIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED) { } void calculateBoundaryFluxes_(const ElementContext& elemCtx OPM_UNUSED, unsigned scvfIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED) {} private: Implementation& asImp_() { return *static_cast(this); } const Implementation& asImp_() const { return *static_cast(this); } // the volumetric flux of all phases [m^3/s] Evaluation volumeFlux_[numPhases]; // the difference in effective pressure between the exterior and the interior degree // of freedom [Pa] Evaluation pressureDifference_[numPhases]; // the local indices of the interior and exterior degrees of freedom unsigned short interiorDofIdx_; unsigned short exteriorDofIdx_; unsigned short upIdx_[numPhases]; unsigned short dnIdx_[numPhases]; }; } // namespace Opm #endif